

Getting Started with Flex™ 4

Jeanette Stallons, Andrew Shorten,
and Vince Genovese

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Getting Started with Flex™ 4
by Jeanette Stallons, Andrew Shorten, and Vince Genovese

Copyright © 2010 Adobe Systems Incorporated. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Copyeditor: Amy Thomson
Production Editor: Adam Zaremba
Proofreader: Sada Preisch
Indexer: Angela Howard
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
September 2010: First Edition.

Adobe, the Adobe logo, Flash, Flash Builder, Flex, Flex Builder, and Live-
Cycle are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. ActiveX and Win-
dows are either registered trademarks or trademarks of Microsoft Corpora-
tion in the United States and/or other countries. Apple and Macintosh are
trademarks of Apple Inc., registered in the United States and other countries.
Linux is a registered trademark of Linus Torvalds. Microsoft and Windows
are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Solaris is a registered trademark or
trademark of Sun Microsystems, Inc. in the United States and other countries.
All other trademarks are the property of their respective owners.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN: 978-0-596-80411-4

[TM]

1283527838

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Adobe Developer Library, a copublishing partnership
between O’Reilly Media Inc., and Adobe Systems, Inc., is the
authoritative resource for developers using Adobe technolo-
gies. These comprehensive resources offer learning solutions
to help developers create cutting-edge interactive web appli-
cations that can reach virtually anyone on any platform.

With top-quality books and innovative online resources cover-
ing the latest tools for rich-Internet application development,
the Adobe Developer Library delivers expert training straight
from the source. Topics include ActionScript, Adobe Flex®,
Adobe Flash®, and Adobe Acrobat®.

Get the latest news about books, online resources, and more
at http://adobedeveloperlibrary.com.

,adobefront-4.25x7_updated.29752 Page 5 Monday, August 16, 2010 5:08 PM

,adobefront-4.25x7_updated.29752 Page 6 Monday, August 16, 2010 5:08 PM

Contents

Preface vii

Introduction xiii

Chapter 1: Build an Application in an Hour 1
Build the User Interface 1
Connect to Data 12
Create Pages 21
Code Your Interactions 32

Chapter 2: Modify the Database 43
Add Data Using a Form 43
Update Data Using a Form 56
Update Data Using the DataGrid 62
Delete Data 66

Chapter 3: Test and Debug Your Code 69
Test Server-Side Code 69
Trace Network Traffic 75
Trace Variables 79
Use Breakpoints 83

v

Chapter 4: Deploy Your Application to a Web Server 89
Create a Release Version 89
Include Your Application on a Web Page 91
Deploy Service Code 99

Chapter 5: Change the Appearance of Your Application 109
Use Styling 109
Add Components to Skins 120
Create Skins with New Graphics 127

Chapter 6: Add Charts and Graphs 133
Add a Pie Chart 133
Add a Column Chart 139
Format Charts 148

Chapter 7: Resources for Flex Developers 161
Online Resources for Getting Started 161
The Flex Cookbook 162
Community Links and Resources 162
Newsletters 164
Books 165

Index 167

vi | Table of Contents

Preface

If you are curious about Flash Builder and Flex and want to get
up to speed in a matter of hours, this book is for you! Hopefully
you will be inspired to try Flash Builder and Flex, follow the
tutorials to quickly develop an application, and see just how
easily you can bring your ideas to life using Flex.

Who Should Read This Book
The short tutorials and sample code in this book are designed
to help you evaluate Flash Builder and Flex. Step through the
tutorials in sequence and browse the sample code associated
with each. The book is designed to be a quick tour of the Flash
Builder and Flex world without delving too deeply into any one
topic.

The material is targeted at web developers familiar with build-
ing applications using PHP, ColdFusion, or Java. If you have a
different background or skill set and are interested in learning
Flex, check out the “Flex in a Week” video training at
www.adobe.com/devnet/flex/videotraining/.

To make up for the lack of depth in every area, we provide a
collection of resources in Chapter 7 that will help you dive
deeper into Flex and Flash Builder.

vii

http://www.adobe.com/devnet/flex/videotraining/
http://www.adobe.com/devnet/flex/videotraining/

How This Book Is Organized
Here is a summary of the chapters in the book and what you
can expect from each:

Introduction
This chapter provides a brief introduction to the Flash
Platform and showcases some real-world applications and
sites that make use of Flex, all of which demonstrate what
is possible using Flash Builder and Flex.

Chapter 1, Build an Application in an Hour
This chapter guides you through creating a Flex applica-
tion that retrieves, displays, and modifies database
records.

Chapter 2, Modify the Database
This chapter teaches you how to modify (add, update,
and delete) the data in the database from which you
retrieved the data in Chapter 1. You create a new
EmployeeAdd state, which has an input form for a user to
add a new employee to the database.

Chapter 3, Test and Debug Your Code
In this chapter, you learn to test and debug your Flex
application.

Chapter 4, Deploy Your Application to a Web Server
In this chapter, you learn to deploy your Flex application
to a web server.

Chapter 5, Change the Appearance of Your Application
In this chapter, you learn how to change the appearance
of the application you created and deployed using styling
and skinning.

Chapter 6, Add Charts and Graphs
This chapter teaches you how to use Flex components and
add charts and graphs to your application.

viii | Preface

Chapter 7, Resources for Flex Developers
This chapter presents numerous resources for Flex devel-
opers, including blogs, forums, podcasts, books, and
more.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
file extensions, pathnames, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attrib-
utes, keys, functions, types, classes, namespaces, meth-
ods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros,
the contents of files, and the output from commands.

Constant width bold
Shows commands or other text that should be typed lit-
erally by the user.

Constant width italic
Shows text that should be replaced with user-supplied
values.

NOTE
This signifies a tip, suggestion, or general note.

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and docu-
mentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For ex-
ample, writing a program that uses several chunks of code from

Preface | ix

this book does not require permission. Selling or distributing
a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a
significant amount of example code from this book into your
product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For ex-
ample: “Getting Started with Flex 4, by Jeanette Stallons et al.
Copyright 2010 O’Reilly Media, Inc., 978-0-596-80411-4.”

If you feel your use of code examples falls outside fair use or
the permission given here, feel free to contact us at
permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at:

http://oreilly.com/catalog/9780596804114

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

x | Preface

mailto:permissions@oreilly.com
http://oreilly.com/catalog/9780596804114
mailto:bookquestions@oreilly.com

For more information about our books, conferences, Resource
Centers, and the O’Reilly Network, see our website at:

http://oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital li-
brary that lets you easily search over 7,500 tech-
nology and creative reference books and videos
to find the answers you need quickly.

With a subscription, you can read any page and watch any
video from our library online. Read books on your cell phone
and mobile devices. Access new titles before they are available
for print, and get exclusive access to manuscripts in develop-
ment and post feedback for the authors. Copy and paste code
samples, organize your favorites, download chapters, book-
mark key sections, create notes, print out pages, and benefit
from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books
Online service. To have full digital access to this book and
others on similar topics from O’Reilly and other publishers,
sign up for free at http://my.safaribooksonline.com.

Acknowledgments
We’d like to acknowledge the help of the Adobe Developer
Center and Platform Learning Resources teams in the design
and writing of this book. The learning materials that inspired
this book were created by Jeanette Stallons, in collaboration
with the Adobe team, as an online resource. You can find this
material at www.adobe.com/devnet/flex/testdrive/.

The scope of the materials online is wider than what you’ll find
in this book, and we recommend you use both as learning re-
sources as you develop your Flex and Flash Builder skills.

Preface | xi

http://oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.adobe.com/devnet/flex/testdrive/

Introduction

If you’re curious about Flex and want to get up to speed in a
matter of hours, this book is for you!

After providing a brief introduction to the Adobe Flash Plat-
form and showcasing some real-world applications that dem-
onstrate what is possible using Flex, the following chapters
walk through building, debugging, and deploying a complete
Flex application. You can proceed with each chapter in order
or you can explore only the topics that interest you, take a look
at the example code, and apply the techniques to your own
applications.

Either way, we hope that you enjoy this taste of Flex and that
it inspires you to learn more!

First Things First—What Is Flex?
Flex® is an open source software development toolkit for
building rich Internet applications (RIAs) on the Flash
Platform.

To build a Flex application, you write object-oriented code us-
ing the ActionScript 3, MXML, and CSS languages. These lan-
guages are easy to learn for programmers from many different
backgrounds, such as Java, PHP, C#, HTML, and JavaScript.
Flex supports a component-oriented programming model
that allows developers to easily assemble applications from

xiii

components and extend base components to create custom
interactions.

The Flex SDK includes a compiler, debugger, and hundreds of
ready-to-use components and ActionScript classes that accel-
erate the development of RIAs. Using these tools from the
command line, from build tools such as Ant, or via IDEs from
Adobe or third parties, you can compile code into cross-
platform applications that run in the browser using Adobe
Flash Player or on the desktop with Adobe AIR.

To help software developers rapidly develop applications and
content using the Flex framework, Adobe offers an Eclipse-
based IDE, Adobe® Flash® Builder™ 4 (formerly Adobe Flex
Builder). It includes support for intelligent coding, debugging,
and visual design, as well as powerful testing and monitoring
tools that speed up development and lead to higher-performing
applications. You can find more information on Flash Builder
on Adobe’s website (www.adobe.com/products/flashbuilder).

How Does Flex Work?
Flex source code (in MXML, ActionScript, and CSS files) is
compiled into Flash bytecode (a SWF file), which is executed
at the client side by the ActionScript Virtual Machine in Adobe
Flash Player or Adobe AIR.

To access backend databases and other systems, Flex includes
numerous networking APIs that support everything from plain
XML, JSON, and SOAP web services to optimized protocols
such as Action Message Format (AMF) and Real Time Mes-
saging Protocol (RTMP) (Figure I-1).

Flex applications can leverage the capabilities offered by Adobe
Flash Player or Adobe AIR to display complex graphics, handle
user interface interactions, and manipulate data (by filtering
and sorting, for example) without round-tripping to the server.
As a result, Flex applications can deliver an enhanced user ex-
perience while being more responsive and easier to use than
HTML-based applications.

xiv | Introduction

http://www.adobe.com/products/flashbuilder

What Can You Do with Flex?
You can use Flex to build anything from multimedia-rich con-
sumer experiences to functional line-of-business applications
that run behind the firewall. You can use Flex to deliver an
entire application experience, or you can embed Flex-based
components and widgets within existing HTML websites, in-
cluding enterprise portals or social networking sites such as
Facebook.

In addition to developing browser-based applications that
work consistently across Windows, Mac OS X, and Linux op-
erating systems, you can deploy an enhanced, standalone ver-
sion of your application that makes use of the capabilities
available with Adobe AIR. You will also be able to leverage your
knowledge of Flex to build applications that work on mobile
phones and other Internet-connected devices.

Next, we provide a quick tour of some real-world applications
that illustrate the types of experiences you can build with Flex.
To learn more about these applications, visit the Flex Show
case.

Figure I-1. How Flex works for browser-based applications

Introduction | xv

http://www.flex.org/showcase/
http://www.flex.org/showcase/

Product Configuration
With an ever-increasing amount of prepurchase product re-
search being done online and the phenomenal growth in online
transactions, ensuring customers can explore, configure, and
personalize products through intuitive and engaging online
tools is a key differentiator. This is especially true for complex,
high-value products, where thousands, if not millions, of po-
tentially different product configurations can be available.

Mini USA built a product configuration tool that provides a
great example of using Flex to present a huge array of choices
and combinations to a potential purchaser through an inviting
and fun-to-use interface (Figure I-2).

Try it out at http://miniusa.com/?#/build/configurator/mini-m.

Figure I-2. Mini USA configuration tool

xvi | Introduction

http://miniusa.com/?#/build/configurator/mini-m

Consumer Applications
European car manufacturer Fiat selected Flex to develop Eco-
Drive, a desktop application for existing Fiat customers who
want to improve their driving skills and reduce CO2 emissions
(Figure I-3).

As a desktop application deployed on Adobe AIR, the appli-
cation isn’t constrained by the browser security sandbox. Users
can insert a USB key and load car journey data directly into the
EcoDrive application, which would be impossible with a
browser-based web application.

The application presents the driver with detailed environmen-
tal performance of the car, including the CO2 emission level
for each trip. It analyzes the driver’s style and then provides
tips and recommendations on how to modify that style to ach-
ieve CO2 reductions and save money on fuel.

Download the application at www.fiat.com/ecodrive/.

Figure I-3. Fiat EcoDrive application

Introduction | xvii

http://www.fiat.com/ecodrive/

Media and Publishing
As publishers look to deliver their content to consumers
through a variety of different channels, many are leveraging
Flex to combine audio, video, images, and text-based infor-
mation to create digital versions of existing publications.

One such publisher is the New York Times. The Times Reader
successfully re-creates the newspaper reading experience in a
desktop application. Readers can browse through current and
archived news, watch video content, adjust the amount of in-
formation displayed on the screen based on their preferences,
and even complete the interactive daily crossword (Figure I-4).

Download the application at http://timesreader.nytimes.com/
timesreader/index.html.

Figure I-4. The New York Times Reader

xviii | Introduction

http://timesreader.nytimes.com/timesreader/index.html
http://timesreader.nytimes.com/timesreader/index.html

Education
The ability to seamlessly combine multimedia content in an
engaging user experience is also important for online learning
applications. New generations of educational tools, which also
offer real-time, collaborative multiuser learning, are being built
using Flex.

TOTALe is a fully web-based, multiuser language-learning
program from Rosetta Stone (Figure I-5). It features online
coursework and live sessions with native-language coaches and
other students, as well as access to a web-based community
with innovative language games. In addition to Flex, this ap-
plication uses Adobe LiveCycle Collaboration Service, a suite
of hosted real-time, multiuser services to provide integrated
Voice over IP (VoIP), streaming video, instant messaging, and
multiuser rooms.

You can get more information at www.rosettastone.com/totale.

Figure I-5. Rosetta Stone web-based tool

Introduction | xix

http://www.rosettastone.com/totale

Social Networking
With the rise of social networking sites, a variety of tools have
emerged to help users manage the information that is impor-
tant to them.

TweetDeck (Figure I-6) is a great example of a social network-
ing application developed using Flex and deployed on Adobe
AIR. TweetDeck is a personal browser for staying in touch with
what’s happening now, connecting you with your contacts
across Twitter, Facebook, MySpace, and LinkedIn. Tweet-
Deck nicely demonstrates how Flex applications can connect
to a myriad of servers and services and present a single view of
data from disparate systems.

Download TweetDeck at www.tweetdeck.com/desktop/.

Figure I-6. TweetDeck social networking application

xx | Introduction

http://www.tweetdeck.com/desktop/

Business Productivity
Some of the most impressive Flex applications available today
provide lightweight equivalents to traditional desktop soft-
ware, such as word processing, presentation authoring, and
image manipulation tools.

Adobe launched its own online companion to Adobe Acrobat,
called Acrobat.com (Figure I-7), which allows users to create
documents, presentations, and tables online; share the latest
versions with coworkers; provide feedback; and conduct real-
time collaboration in an online meeting room. Built using Flex
and leveraging the same infrastructure used to provide the
Adobe LiveCycle Collaboration Service, this is a great example
of how RIAs are changing the way people work.

Try it out for yourself at www.acrobat.com/.

Figure I-7. Adobe Acrobat.com

Introduction | xxi

http://acrobat.com
http://www.acrobat.com/

Data Visualization
Flex includes a comprehensive set of data visualization com-
ponents that allow you to create reporting and data analysis
applications with ease. Better yet, because the framework is
extensible, if Flex doesn’t include the type of chart or compo-
nent you require, you can easily create your own.

An impressive example of data visualization comes from Uni-
versal Mind’s SpatialKey application (Figure I-8), a powerful
online location intelligence solution for creating interactive
reports and analysis. Flex provides an ideal solution for repre-
senting and quickly rendering large amounts of data. For
example, hundreds of points on a map can be updated dynam-
ically compared with the display of static points provided by
traditional geographic information systems (GIS).

You can get more information at www.universalmind.com/port
folio/project/spatialkey/.

Figure I-8. Universal Mind’s SpatialKey application

xxii | Introduction

http://www.universalmind.com/portfolio/project/spatialkey/
http://www.universalmind.com/portfolio/project/spatialkey/

Financial Services
The financial services sector has produced some of the most
sophisticated, high-performance, and data-intensive RIAs in
use today. Everything from delivery of real-time market feeds
to full-blown stock-trading applications with millisecond re-
sponse times have been built with Flex.

NASDAQ Market Replay (Figure I-9) is an extremely powerful
replay and analysis tool, allowing users to view the consolida-
ted order book and trade data for securities listed on NASDAQ,
NYSE, and other regional exchanges at any point in time. By
using Adobe AIR to deliver a desktop-based experience, the
developers of NASDAQ Market Replay allow users to request
and cache volumes of data that they can then analyze even
when they’re offline.

A case study is available at www.adobe.com/products/air/.

Figure I-9. NASDAQ Market Replay tool

Introduction | xxiii

http://www.adobe.com/products/air/

Technologies and Terms Related to Flex
Development
There are a host of Flex- and Flash Builder-related technologies
and tools that you might want to know about before you start
building your Flex application.

Here’s a quick rundown of the tools, technologies, and terms
that you’ll encounter as you explore Flex.

Adobe Flash Platform
The Adobe Flash Platform is an entire family of Adobe tech-
nologies you can use to create, run, and provide data to RIAs
(in the form of SWF files), including client runtimes, tools,
frameworks, servers, and cloud services.

Flash Platform Runtimes
At the center of the Flash Platform are the client runtimes:
Adobe Flash Player for the browser and Adobe AIR for outside
the browser. The runtimes render applications created on the
Flash Platform (in the form of SWF files), allowing users to
interact with them.

Adobe Flash Player
Adobe Flash Player is a browser plug-in or Active X control
with a rich object model and rendering engine that allows de-
velopers to include highly expressive and interactive content
in web applications. To include this richer content, you create
a SWF file (a compiled bytecode file that Flash Player can ren-
der) using developer tools and then reference this SWF file in
your HTML page. When the browser parses the HTML page,
the Flash Player downloads the SWF file and runs it in the
browser window.

xxiv | Introduction

Adobe AIR
Adobe AIR is a cross-operating-system runtime and set of tools
that allow developers to deploy HTML, Ajax, and Flash Plat-
form applications (SWF files) to the desktop. An emerging
design pattern for applications is to deliver a browser-based
version for all users and a desktop version for more active or
power users.

Applications created on the Flash Platform for the browser
use the Flash Player client runtime. These applications have all
the benefits of browser-based applications, including any-
where access, easy deployment (no installation necessary),
simple updating, and consistency across all operating systems
and browsers. They also have all the limitations of browser-
based applications, including no offline access and the confines
of the browser’s security sandbox, which keeps them from in-
teracting with the user’s computer outside the browser win-
dow. To get the best of both worlds, Adobe introduced Adobe
AIR.

You can use Flash Builder to create both web and desktop ap-
plications with Flex. If you create both types of applications,
you can also share code from separate code libraries. When
you compile a Flex application for the desktop, you get a SWF
file and an XML file (called the application descriptor file),
which includes information about what the container operat-
ing system window should look like, what icon should be used
for the application on the client computer, and more. When
you are ready to deploy, Flash Builder uses a tool called the
AIR Development Tool (ADT) to create a release build con-
sisting of an AIR package file, which includes the SWF file, the
application descriptor file, assets, and more.

Users must have the Adobe AIR runtime installed to run an
AIR application. To provide a more seamless install experience
for users, so they can install the application from a web page
(instead of having to download and install the AIR runtime and
then download and install the AIR application), Adobe pro-
vides a default HTML file and badge.swf file, which provides a

Introduction | xxv

template for letting users click a badge (a framed, customized
image button) that checks for and installs the runtime if nec-
essary and then installs the AIR application.

Flash Platform Tools
Adobe offers many tools for creating SWF files, including Flash
Builder (formerly Flex Builder), Flash Catalyst, and Flash Pro-
fessional. Each tool caters to different developer and designer
skill sets.

Adobe Flash Builder
Adobe Flash Builder is an Eclipse-based development tool tar-
geted at developers. With this IDE, you use the Flex framework
to create SWF files. Flash Builder accelerates Flex application
development by providing intelligent code hinting and gener-
ation, refactoring, compile-time error checking, interactive
step-through debugging, and visual design for laying out and
styling user interfaces.

Adobe Flash Catalyst
Adobe Flash Catalyst is a new professional interaction design
tool for rapidly creating expressive interfaces and interactive
content without writing code. Designers use Flash Catalyst to
create the functional user experience and provide the project
file to developers who use Flash Builder to add functionality
and integrate with servers and services.

Adobe Flash Professional
Adobe Flash Professional CS5 is the industry standard for in-
teractive authoring and delivery of immersive experiences that
present consistently across personal computers, mobile devi-
ces, and screens of virtually any size and resolution.

You can find more information about each of these tools and
the workflows between them on Adobe’s website.

xxvi | Introduction

http://www.adobe.com/products/flex/workflow/

Flash Platform Languages
You create Flex applications using two languages: ActionScript
and MXML.

ActionScript is an inheritance-based object-oriented scripting
language based on the ECMAScript standard. The latest ver-
sion, ActionScript 3.0, is based on ECMA-262 4th edition,
which was proposed but never approved and published. The
syntax and object-oriented features are very similar to Java: you
define and extend classes; define and implement interfaces;
and use the private, public, protected, and internal (package)
namespaces. Unlike Java, in ActionScript you use curly braces
inside the package keyword when defining classes, you use the
function keyword to declare methods, and you use post-colon
data typing instead of the data type prefixes used in Java. Data
typing is also optional. You can type everything for IDE code-
hinting and compile and runtime type checking, but you can
also use dynamic typing when appropriate for flexibility.

MXML is a convenience language; it provides an alternate way
to generate ActionScript using a declarative tag-based XML
syntax. When you compile an application, the MXML is parsed
and converted to ActionScript in memory and then the
ActionScript is compiled into bytecode (your SWF). Although
you never have to use MXML, developers typically use it to
define application interfaces (for layouts, the MXML code is
usually more succinct and understandable than the corre-
sponding ActionScript would be) and use ActionScript to write
the application logic. Just as you break up your logic into sep-
arate ActionScript classes, you also break up your MXML code
into separate reusable MXML components.

Servers and Server-Side Technologies
The Adobe Flash Platform provides a number of technologies
for enabling communication between Flex applications and
server-side applications.

Introduction | xxvii

Flex remote procedure calls
Flex applications can communicate with backend servers using
either direct socket connections or, more commonly, through
HTTP. You can make HTTP requests (to JSP or XML files,
RESTful web services, or other server files that return text over
HTTP), web service requests (to web services that return
SOAP-formatted text over HTTP), or Flash Remoting requests
(to methods of server-side classes that return binary AMF over
HTTP). When possible, it is advisable to use Flash Remoting,
because its binary data transfer format allows applications to
load data up to 10 times faster than with the more verbose,
text-based formats such as XML, JSON, or SOAP.

Flash Remoting
Flash Remoting MX is a combination of client- and server-side
functionality that together provides a call-and-response model
for accessing server-side objects from Flash Platform applica-
tions as if they were local objects. It provides transparent data
transfer between ActionScript and server-side data types, han-
dling the serialization into AMF, deserialization, and data mar-
shaling between the client and the server. Flash Remoting MX
uses client-side functionality built into Flash Player and server-
side functionality that must be installed on the application
server.

Flash Remoting MX is built in on some servers (such as Cold-
Fusion and Zend), but must be installed on other servers (via
BlazeDS or LiveCycle Data Services on Java EE servers, via
WebORB or FluorineFx on .NET servers, via the Zend Frame-
work or AMFPHP on PHP servers, and more).

BlazeDS
You can choose from several different server-side Flash Re-
moting implementations for Java servers. BlazeDS is a free,
open source implementation created by Adobe that provides
server-side Java remoting as well as a web messaging technol-
ogy to push data in real time to Flex applications. The

xxviii | Introduction

messaging service also allows Flex applications to exchange
messages with other nonFlex, JMS-enabled applications.

You can use a combination of the remoting and messaging
services to create real-time, data-centric applications. When a
user changes some data in this type of Flex application, the data
is saved in the database on the server and then pushed out to
all the other clients currently accessing the data so users always
see the most up-to-date data. To create this type of data syn-
chronization using BlazeDS or a similar technology, you must
typically write quite a bit of code to save the data on the server,
push the data out to the other clients, and manage any data
conflicts. Alternatively, you can use LiveCycle Data Services,
which provides much of this functionality for you (see the fol-
lowing section on Adobe LiveCycle Data Services).

You can find more information on BlazeDS at http://opensource
.adobe.com/wiki/display/blazeds/BlazeDS.

Adobe LiveCycle Data Services
Adobe LiveCycle Data Services is a superset of BlazeDS that
provides a complete data infrastructure for enterprise Flex ap-
plications. In addition to providing the remoting and messag-
ing services available with BlazeDS, it also provides a data
management service that can reduce development and main-
tenance costs for real-time, data-centric applications.

The data management service automates data synchronization
between a Flex application and the middle tier, providing con-
flict resolution, paging and lazy loading, management of large
collections of data and nested data relationships (such as one-
to-one and many-to-one associations), integration with Hiber-
nate, and offline data access in AIR applications. You can add
many of these advanced data management service features to
your applications without writing any server-side code using
modeling technologies introduced in LiveCycle Data Services
ES2.

LiveCycle Data Services also provides advanced deployment
options for maximum scalability, streaming with the RTMP,

Introduction | xxix

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS

PDF generation, portal integration, LiveCycle connectivity, ac-
cess to developer and enterprise support resources, and more.

You can find more information on Adobe LiveCycle Data Serv-
ices at www.adobe.com/products/livecycle/dataservices/.

Flash Platform Services
Instead of hosting and managing your own data messaging
service, you can also use the Collaboration service, which pro-
vides real-time collaboration features, including chat, audio,
and video. The Collaboration service is one of the Adobe Flash
Platform Services, which also include the Distribution service
(for distributing, promoting, tracking, and monetizing appli-
cations on social networks, mobile devices, and desktops) and
the Social service (for integrating with multiple social net-
works, including Facebook, MySpace, Twitter, Yahoo!, Goo-
gle, and AOL, using a single ActionScript API).

You can find more information on Flash Platform Services at
www.adobe.com/flashplatform/services/.

xxx | Introduction

http://www.adobe.com/products/livecycle/dataservices/
http://www.adobe.com/flashplatform/services/

CHAPTER 1

Build an Application in an
Hour

In this chapter, you will create a Flex application that retrieves,
displays, and modifies database records. Flex applications do
not connect directly to remote databases. Instead, you must
connect your application to a data service written in your fa-
vorite web language (PHP, ColdFusion, Java, or any other
server-side web technology). You will build the frontend Flex
application; the database and the server-side code to read, add,
edit, and delete database records is provided for you as a PHP
class, a ColdFusion component, or Java classes. The completed
application is shown in Figure 1-1.

Build the User Interface
In this chapter, you will build a Flex project and a Flex appli-
cation that retrieves data from the database and displays it. The
application will display Employee data on one “page” in the
application and Department data on another.

The first task is to create a new Flex project for your application
server and create the user interface. You’ll retrieve data from
the server and display it in Chapter 2.

1

Step 1: Install the Test Drive Server Files
These files include a database and server-side files to manipu-
late data in the database. Your Flex application will call meth-
ods of one of these server-side files, EmployeeService.

Use the following steps to set up PHP:

1. Download and unzip the Test Drive PHP server file from
www.adobe.com/devnet/flex/testdrive/assets/test
drive_setup_PHP.zip. It contains a database and a Test
Drive folder.

2. Create the testdrive_db database on your MySQL in-
stallation using the testdrive_db.sql file located in the
Database folder. If you do not have permission to create
a database, use the testdrive_table.sql file instead to cre-
ate two tables in an existing database. After you create
the database, set user privileges for it.

Figure 1-1. The completed application

2 | Chapter 1: Build an Application in an Hour

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_setup_PHP.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_setup_PHP.zip

3. Move the TestDrive folder, which contains the PHP serv-
ice file, to your PHP server.

4. Open /TestDrive/services/EmployeeService.php in an ed-
itor and change the username, password, server, port, and
databasename properties to the correct values for your
setup. This class file contains the methods you will call
from your Flex application to retrieve, add, update, and
delete data.

Use the following steps to set up ColdFusion:

1. Download and unzip the Test Drive ColdFusion server
file from www.adobe.com/devnet/flex/testdrive/assets/
testdrive_setup_CF.zip. It contains a CAR file.

2. In the ColdFusion Administrator, navigate to Packaging
& Deployment and deploy the CAR file. In the Deploy
Wizard, change the deployment locations to reflect the
locations of the db and wwwroot folders on your server.
After deploying, check that you have a new data source
called testdrive_db and a new folder in wwwroot called
TestDrive.

3. Open /ColdFusion/wwwroot/TestDrive/services/Employ-
eeService.cfc in an editor and examine the code. This
class file contains the methods you will call from your
Flex application to retrieve, add, update, and delete
data. The methods have the access argument set to re-
mote so that you can call them from a Flex application.

4. Open /ColdFusion9/wwwroot/WEB-INF/flex/services-
config.xml in an editor. This file is used when calls are
made to the server from your application. Locate the
<property-case> tag and change all three values to
true, as shown below:

<property-case>
 <!-- cfc property names -->
 <force-cfc-lowercase>true
 </force-cfc-lowercase>
 <!-- Query column names -->
 <force-query-lowercase>true
 </force-query-lowercase>

Build the User Interface | 3

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_setup_CF.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_setup_CF.zip

 <!-- struct keys -->
 <force-struct-lowercase>true
 </force-struct-lowercase>
</property-case>

NOTE
If you are using an earlier version of ColdFusion,
your configuration file may not have these tags
and you will need to add them. For details, refer
to the documentation on using Flash Remoting
with your particular server.

5. Restart the ColdFusion server.

Use the following steps to set up Java:

1. Download and unzip the Test Drive Java server file from
www.adobe.com/devnet/flex/testdrive/assets/test
drive_setup_JAVA.zip. It contains a WAR file for a web
application called testdrive.

2. Deploy the WAR file to your web server. It contains the
Java classes, an Apache Derby embedded database, and
BlazeDS 4 files.

NOTE
BlazeDS 4 is currently in beta. This WAR file
contains BlazeDS files from the January 29, 2010,
nightly build.

3. Open /{your server webapps folder}/testdrive/WEB-
INF/src/services/EmployeeService.java in an editor. This
class file contains the methods you will call from your
Flex application to retrieve, add, update, and delete
data.

4 | Chapter 1: Build an Application in an Hour

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_setup_JAVA.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_setup_JAVA.zip

4. Open /WEB-INF/flex/remoting-config.xml in an editor
and examine the code. This file is used when calls are
made to the server from your application. Notice the
definition for the destination called employeeService,
which points to the services.EmployeeService class.

Step 2: Create a New Flex Project
In Flash Builder, select File→New→Flex Project (Figure 1-2).
Create a new Flex project called TestDrive and store the project
files locally. Be sure to specify your application server type and
the appropriate web root and root URL for the web applica-
tion, and validate the configuration (Figure 1-3).

NOTE
If you are using the Flash Builder plug-in in an existing
Eclipse installation, you may need to first switch to the
Flash perspective.

The project location is where the application source files will
be stored. The compiled application will be stored on your ap-
plication server in the location you specify for the Output
folder. This folder should be a subfolder of the TestDrive (or
testdrive) application you set up on your application server in
the previous section.

The following are some example project settings:

Example project settings for PHP:

• Web root: /usr/local/zend/apache2/htdocs

• Root URL: http://localhost:10088/

• Output folder: /usr/local/zend/apache2/htdocs/TestDrive/
TestDrive-debug

Build the User Interface | 5

Figure 1-2. Create a new Flex project called TestDrive

Example project settings for ColdFusion; when creating the
project, select the ColdFusion Flash Remoting option for re-
mote object access:

• ColdFusion root folder: /Applications/ColdFusion9

• Web root: /Applications/ColdFusion9/wwwroot

• Root URL: http://localhost:8500/

• Output folder: /Applications/ColdFusion9/wwwroot/Test-
Drive/TestDrive-debug

6 | Chapter 1: Build an Application in an Hour

Figure 1-3. Configure your application server and validate it

Example project settings for Java; when creating the project,
select the BlazeDS option for remote object access:

• Root folder: /Applications/tomcat/webapps/testdrive

• Root URL: http://localhost:8400/testdrive/

• Context root: testdrive

• Output folder: /Applications/tomcat/webapps/testdrive/
TestDrive-debug

When you create a new Flex project, Flash Builder creates an
MXML file with the same name as the project, as shown in
Figure 1-4. This is the main application file where you add your
code. You create Flex applications using two languages: Ac-
tionScript and MXML. Typically, you use MXML and Flex
components to create application interfaces, and ActionScript
and events to program application logic. MXML tags and Ac-
tionScript code can reference each other, similar to HTML tags
and JavaScript code.

Build the User Interface | 7

When you compile an application, a SWF file is created. You
reference the SWF file in an HTML page, and the Flash Player
(available as a browser plug-in or ActiveX control) will down-
load and render the SWF file.

Figure 1-4. Create the TestDrive project

In TestDrive.mxml, the first line of code is the XML declaration
for the parser. The next line is the <s:Application> tag, which
defines the Application container that must be the root tag for
a Flex application. When the application is compiled, a SWF
file, an HTML wrapper page that references the SWF file, and
other files are placed in the bin-debug folder on your applica-
tion server so you can browse to the application.

Step 3: Use Design Mode to Add Components and Set
Properties
Switch to Design mode and drag out Label, DataGrid, and
Button components from the Components view to create the
interface shown in Figure 1-5. Use the Properties view to assign
component IDs of empBtn, deptBtn, and empDg, and set other
properties.

HTML applications are built from document elements such as
headings, paragraphs, and tables. Flex applications are built
from components such as Buttons, CheckBoxes, and Data-
Grids. The Flex 4 framework includes over 70 components,
including user interface controls to display content and provide
user interaction and containers to manage the layout.

8 | Chapter 1: Build an Application in an Hour

Figure 1-5. Arrange components as shown here

Switch to Source mode and take a look at the generated code.
You will see a new tag for each of the components you added.
The order of the tags does not matter, because the Application
container uses absolute positioning by default, so component
positions are set by their x and y properties.

The <s:Label> tag represents a Label control, a very simple user
interface component that displays text. Its text property is set
to XYZ Corporation Directory, and its x and y properties are
set to the location where it will appear in the interface. The
color and fontSize attributes change the style of the font used.
In Flex, you can set color styles to a string for any of the 16
colors in the VGA color set (for example, red or blue) or an
RGB triplet in hexadecimal format (for example, #FF0000 or
#0000FF):

<s:Label x="36" y="36" text="XYZ
Corporation Directory" color="maroon"
fontSize="20"/>

For each component, you can specify properties and styles.
Properties apply only to that particular component instance.
Styles can be set inline as done here or using CSS to create style
rules to apply to your components.

Build the User Interface | 9

Step 4: Change Component Attributes in MXML
In this step, use the Flash Builder Content Assist to select and
set values for various properties and styles.

When you place your cursor inside a tag and press the space
bar or Ctrl-space bar, you get code hinting with the Flash
Builder Content Assist. It shows a list of all the attributes you
can set for that tag, including properties, styles, events, and
more (see Figure 1-6). Different symbols represent different
attributes. This is the same list you see in the Alphabetical view
of the Design mode Properties view.

Figure 1-6. Use Content Assist to see a list of all possible tag attributes

You can get more complete descriptions for each of the attrib-
utes in the component’s API, its application programming
interface (Figure 1-7). To navigate to a component’s API doc-
umentation, select Help→Dynamic Help, then click a compo-
nent tag in your code. You will see a link to that component’s
API documentation in the Help view.

Step 5: Browse the Application
Use the Run button or the Run menu to compile the applica-
tion and view it as an HTML page in a browser window
(Figure 1-8).

10 | Chapter 1: Build an Application in an Hour

Figure 1-7. View a component’s API documentation

Figure 1-8. View the application in a browser

Your application appears in the browser inside a generated
HTML wrapper page. You won’t see any data in your appli-
cation at this point—you should only see the layout. You’ll be
adding data in Chapter 2. Specifically, you will retrieve and
display data in the DataGrid, add application pages, and wire
up the buttons.

Build the User Interface | 11

When you finish this exercise, your code should look like the
following:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 minWidth="955" minHeight="600">
 <fx:Declarations>
 <!-- Place non-visual elements
 (e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label x="36" y="36" text="XYZ Corporation Directory"
 color="maroon" fontSize="20" fontWeight="bold"/>
 <s:Button x="36" y="85" label="Employees" id="empBtn"/>
 <s:Button x="124" y="85" label="Departments"
 id="deptBtn"/>
 <mx:DataGrid x="36" y="114" id="empDg">
 <mx:columns>
 <mx:DataGridColumn headerText="Column 1"
 dataField="col1"/>
 <mx:DataGridColumn headerText="Column 2"
 dataField="col2"/>
 <mx:DataGridColumn headerText="Column 3"
 dataField="col3"/>
 </mx:columns>
 </mx:DataGrid>
</s:Application>

Connect to Data
In this section, you will retrieve data from a database and dis-
play it in your DataGrid.

This section shows you how to create a data service that uses
Flash Remoting to call methods of a PHP class, a ColdFusion
component, or a Java class.

Step 1: Create a Flex Data Service
Use the Data menu and the Service Wizard (Connect to Data/
Service) to create a service for your application server. For
ColdFusion and Java, specify the service file you put on your

12 | Chapter 1: Build an Application in an Hour

application server earlier (see Figure 1-9 for a PHP example).
For Java, select the “No password required” checkbox, select
the employeeService destination, and change the service pack-
age to services.employeeservice.

NOTE
For ColdFusion developers: RDS must be enabled on
your server for Flash Builder to create a data service. If
you have RDS configured to use a password, you will get
an Authentication Required dialog box where you must
enter the password or the username and password.

For Java developers: The testdrive application was
configured to use RDS with no password. You are chang-
ing your generated service package so it matches that
used in the solution files, which you can use with PHP,
ColdFusion, or J2EE servers.

Figure 1-9. Create a Flex data service

Connect to Data | 13

Flash Builder introspects the server-side class file and creates a
corresponding client-side class with the same operations. You
can see your new data service in the Data/Services view (Fig-
ure 1-10).

NOTE
For PHP developers: Flash Builder uses the Zend
Framework to introspect the service. If this is your first
time importing a PHP service, Flash Builder asks you to
install the Zend Framework.

For ColdFusion and Java developers: Some of the
symbols and data types you see will be different from
those shown in Figure 1-10.

Figure 1-10. Locate your new data service in the Data/Services panel

Step 2: Connect the getEmployees() Service Operation
to the DataGrid
Either drag the operation from the Data/Services view onto the
DataGrid or select Bind to Data from the Data menu. Config-
ure the return type by autodetecting it from sample data and
have it create an array of Employee objects, as shown in Fig-
ure 1-11.

14 | Chapter 1: Build an Application in an Hour

NOTE
For Java developers: An array of Employee objects will
already be specified as an existing data type.

For PHP and ColdFusion developers: Before Flash
Builder can bind the results of the operation to a com-
ponent, you must specify the action to be taken with the
data returned from the operation. You are telling it to
create an array of Employee objects, so Flash Builder
creates an Employee ActionScript class file with match-
ing properties and uses that. You can also write your
PHP classes and ColdFusion component methods to re-
turn strongly typed objects instead of general objects.

Figure 1-11. Specify the return type for the getEmployees() operation

Connect to Data | 15

The DataGrid component has also been updated so that it now
has a column for each of the properties contained in the return
data objects, as shown in Figure 1-12.

Figure 1-12. View the new DataGrid columns

The columns property of the DataGrid object is set equal to an
array of DataGridColumn objects where each DataGridCol
umnObject has properties to specify what data it should display,
how big it should be, what its header text should be, and more.
The columns will be displayed in the order in which they are
defined:

<mx:columns>
 <mx:DataGridColumn headerText="office"
 dataField="office"/>
 <mx:DataGridColumn headerText="departmentid"
 dataField="departmentid"/>
 ...

Step 3: Look at the Generated Code in Your MXML File
The DataGrid object has a new creationComplete attribute,
which specifies that when the creationComplete event occurs,
the empDg_creationCompleteHandler() function is called and
the event object is passed to it. The DataGrid creationCom
plete event is broadcast after the DataGrid has been created
and all of its properties are set, including its size and position.
The event object passed to the function is an instance of the
Event class (in this case a FlexEvent) and has properties con-
taining information about the event that occurred:

16 | Chapter 1: Build an Application in an Hour

<mx:DataGrid x="36" y="114"
id="empDg"
creationComplete="empDg_creationCompleteHandler(event)"
dataProvider="{getEmployeesResult.lastResult}">

An instance of your EmployeeService data service is created
inside the Declarations block. You place tags for all nonvisual
objects inside the Declaration tag set. The green color of the
tag indicates it is a compiler tag associated with compiler in-
structions and not an instance of a class:

<employeeservice:EmployeeService
id="employeeService"
fault="Alert.show(event.fault.faultString + '\n' +
event.fault.faultDetail)" showBusyCursor="true"/>

The empDg_creationCompleteHandler() function inside the
Script block calls the getEmployees() method of this data serv-
ice. You place all ActionScript code (which can only include
property and method declarations) inside the Script compiler
tag:

protected function
empDg_creationCompleteHandler(event:FlexEvent):void
{
 getEmployeesResult.token = employeeService.getEmployees();
}

When this code is executed, Flash Player makes a call to the
server. This happens asynchronously in the background; the
user can still interact with the application.

When you make a service call, you need to specify what Flash
Player should do when it gets a result or error back from the
server. You specified a fault handler for the data service itself,
and it will display errors returned from calls to any of its op-
erations in a pop-up box, an instance of the Alert component:

<employeeservice:EmployeeService
 id="employeeService"
 fault="Alert.show(event.fault.faultString
 + '\n' + event.fault.faultDetail)"
 showBusyCursor="true"/>

Connect to Data | 17

A CallResponder object handles successful results:

<s:CallResponder id="getEmployeesResult"/>

This object has a lastResult property, which is automatically
populated with the data when it is returned to Flash Player
from the server. Now you need to associate it with the service
call.

When a service call is initiated, an instance of the AsyncToken
class is created. To associate the CallResponder object with the
service call, set the CallResponder’s token property equal to
AsyncToken generated at the time the service call is made. Now
when data is returned from the server, the CallResponder object
handles it. In addition to getting its lastResult property set,
CallResponder also has result and fault events for which you
can set handlers:

getEmployeesResult.token = employeeService.getEmployees();

Finally, the dataProvider property of the DataGrid is bound
to the lastResult property of the CallResponder object.
This means that whenever the value of getEmployeesRe
sult.lastResult changes at runtime, the DataGrid’s
dataProvider property is updated and the DataGrid will repo-
pulate itself with the new data:

<mx:DataGrid x="36" y="114" id="empDg"
 creationComplete="empDg_creationCompleteHandler(event)"
 dataProvider="{getEmployeesResult.lastResult}">

Step 4: Configure DataGrid Columns and Run the
Application
Select the DataGrid component in Design mode, click the
Configure Columns button in the Properties view, and use the
wizard (shown in Figure 1-13) to get the DataGrid to appear
as shown in Figure 1-14.

18 | Chapter 1: Build an Application in an Hour

Figure 1-13. Customize the DataGrid layout using the Configure
Columns wizard

Figure 1-14. Customize the DataGrid to appear as shown here

When you run the application, you should now see data from
the database displayed in the DataGrid. Be sure to sort the data
and resize and reorder the columns. You can change the width
of an individual column using the Configure Columns button.

Connect to Data | 19

When you finish this exercise, your code should look like the
following:

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 minWidth="955" minHeight="600"
 xmlns:employeeservice="services.employeeservice.*">
 <fx:Script>
 <![CDATA[
 import mx.controls.Alert;
 import mx.events.FlexEvent;

 protected function
 empDg_creationCompleteHandler(event:FlexEvent):void
 {
 getEmployeesResult.token =
 employeeService.getEmployees();
 }
]]>
 </fx:Script>
 <fx:Declarations>
 <s:CallResponder id="getEmployeesResult" />
 <employeeservice:EmployeeService id="employeeService"
 fault="Alert.show(event.fault.faultString + '\n' +
 event.fault.faultDetail)"
 showBusyCursor="true"/>
 </fx:Declarations>

 <s:Label x="36" y="36" text="XYZ Corporation Directory"
 color="maroon" fontSize="20" fontWeight="bold"/>
 <s:Button x="36" y="85" label="Employees" id="empBtn"/>
 <s:Button x="124" y="85" label="Departments"
 id="deptBtn"/>
 <mx:DataGrid x="36" y="114" id="empDg"
 creationComplete="empDg_creationCompleteHandler(event)"
 dataProvider="{getEmployeesResult.lastResult}"
 width="650">
 <mx:columns>
 <mx:DataGridColumn headerText="Last Name"
 dataField="lastname"/>
 <mx:DataGridColumn headerText="First Name"
 dataField="firstname"/>
 <mx:DataGridColumn headerText="Title"
 dataField="title" width="170"/>
 <mx:DataGridColumn headerText="Cell Phone"

20 | Chapter 1: Build an Application in an Hour

 dataField="cellphone"/>
 <mx:DataGridColumn headerText="Email"
 dataField="email" width="130"/>
 </mx:columns>
 </mx:DataGrid>
</s:Application>

This application contains a single page that displays a list of
employees. In the next section, you will create additional
“pages” to view employee details and a list of departments.

Create Pages
In this section, you will create different pages in your applica-
tion. HTML applications use pages as screens, but in Flex, you
use a related but different concept called states. As you’ll see,
unlike HTML, states do not necessarily appear in separate files.

You are going to create three states. The first is the interface
you already built that appears when the application starts. The
other two states will be Departments and EmployeeDetails,
which will appear when a user clicks the Departments button
or selects a row in the DataGrid, respectively.

Step 1: Create Employees and Departments States
In Design mode, use the States view to create a new state called
Departments based on the existing state, <State1>. In Depart-
ments, delete the existing DataGrid and add a new DataGrid
called deptDg and a Button, as shown in Figure 1-15. Rename
<State1> to Employees (Figure 1-16).

Unlike in HTML pages, in Flex applications the same compo-
nent can be part of more than one state. The XYZ Label and
the Employees and Departments buttons are included in both
the Employees and Departments states.

Create Pages | 21

Figure 1-15. Lay out the Departments state

Figure 1-16. Create the Employees and Departments states

Take a look at the generated code. You will see the two states
defined; the Application states property is set equal to an array
of State objects for which you assign names:

<s:states>
 <s:State name="Employees"/>
 <s:State name="Departments"/>
</s:states>

22 | Chapter 1: Build an Application in an Hour

The first DataGrid now has a property, includeIn, set to
Employees, the only state for which it should be displayed:

<mx:DataGrid x="36" y="114" id="empDg"
 creationComplete="empDg_creationCompleteHandler(event)"
 dataProvider="{getEmployeesResult.lastResult}"
 width="650" includeIn="Employees">

The second DataGrid and the new Button are only included in
the Departments state. Components without an includeIn
property (or an excludeFrom property) are included in all states.
You can specify multiple states using a comma-delimited list.

Step 2: Retrieve and Display Department Data in the
Departments DataGrid
Bind the Departments DataGrid to the getDepartments() serv-
ice operation and configure the return type to be an array of
new Department objects. Use the Configure Columns wizard
to customize the DataGrid (shown in Figure 1-17).

Figure 1-17. Configure the Departments DataGrid

Take a look at the generated code. All the code should look
familiar.

Create Pages | 23

Step 3: Change Property Values in Different States
In Design mode, set the Employees Button’s enabled property
to false in the Employees state and the Departments Button’s
enabled property to false in the Departments state (Fig-
ure 1-18).

Figure 1-18. Disable the Departments button in the Departments state

Switch to Source mode. The enabled property of each Button
has been set to false for a single state:

<s:Button x="36" y="85" label="Employees" id="empBtn"
 enabled.Employees="false"/>
<s:Button x="124" y="85" label="Departments" id="deptBtn"
 enabled.Departments="false"/>

Step 4: Change a Property or Style Value in All States
In Design mode, change the color of the Label and then, in the
States panel, select the other state; the color is changed for only
the selected state. Apply the new color to all states by selecting
Apply Current Properties to All States from the Label’s context
menu (shown in Figure 1-19).

When you first set the color in Design mode, some state is
selected so you get the code color.somestate=somevalue. When
you select to apply current properties to all states, this becomes

24 | Chapter 1: Build an Application in an Hour

color=somevalue instead and will be the value for all of the
states that you have specified to include this component in.

Step 5: Create a New EmployeeDetails State
Base the new state on the Employees state. From the Data-
Grid’s context menu in the new state, select Generate Details
Form. Using the wizard (Figure 1-20), create a noneditable
form that does not make a detail call. Arrange the layout as
shown in Figure 1-21 by dragging out a second Form container
from the Layout section of the Components view and dragging
FormItem controls from one Form container to another.

Figure 1-19. Apply property changes to all states

Create Pages | 25

Figure 1-20. Generate a Master-Detail form

In Flex applications, a Form is simply a container that makes
it easier to align your controls. Unlike HTML, it does not group
data for submitting data to the server.

Here, you are not making a service call to retrieve the details
for a specific employee, because you already have all the details
for every employee on the client. When getEmployees() is ini-
tially called to populate the DataGrid, all the employee data is
retrieved. Thus, you only need to show the data for the selected
employee in the form. If you have lots of records with lots of
fields, you initially may want to retrieve only the properties of
the employees you are going to display in the grid and then
make a service call to getEmployeesByID() to retrieve all the data
for a specific employee to be displayed in the form.

26 | Chapter 1: Build an Application in an Hour

Figure 1-21. Lay out the EmployeeDetails state

Rename the labels for the Form fields and rearrange the
FormItem components as shown in Figure 1-21 by dragging
and dropping them to different locations in the Form
containers.

Switch to Source mode and look at the generated code. You
will see your new EmployeeDetails state defined in the
states tag and you will see two new Form tags. Notice that the
text property of all the Label controls in the FormItem tags are
bound to a property of an employee object:

<mx:Form includeIn="EmployeeDetails" x="63" y="325">
 <mx:FormItem label="Last Name">
 <s:Label id="lastnameLabel"
 text="{employee.lastname}"/>
 </mx:FormItem>

Look in the Declarations section. You will see the employee
object defined as an instance of the Employee class:

<valueObjects:Employee id="employee"/>

Create Pages | 27

Below the Declarations section, you will see a new Binding tag,
which binds the selectedItem of the empDg DataGrid to this
employee variable:

<fx:Binding source="empDg.selectedItem as Employee"
 destination="employee"/>

The as keyword must be used to cast the selectedItem to an
Employee because the selectedItem property is defined as a
general object, but the employee must be an Employee object.

Step 6: Add Objects to Specific States
Add four buttons (updateBtn, deleteBtn, addBtn, searchBtn)
and a TextInput (searchTxt) to the EmployeeDetails state (see
Figure 1-22). Give the TextInput an initial value of “Enter last
name here...” Switch to the Employees state; you will not see
the new components. Return to the EmployeeDetails state, se-
lect the Add Button and, in the Property view, include the But-
ton in the Employees state (see Figure 1-23). Repeat for
searchTxt and searchBtn and run the application, shown in
Figure 1-24.

Figure 1-22. Add new components to EmployeeDetails

28 | Chapter 1: Build an Application in an Hour

Figure 1-23. Specify which states should include an object

Figure 1-24. Run the application; you will see only the Employees state

You have now created three states representing pages in your
application. You will write event handlers to switch between
the states, populate the details form, and search the employees
in Chapter 2. You will also wire up the Update, Delete, and
Add Buttons in Chapter 2.

Your code will look like the following at the end of this step
(you can download the complete sample code at
www.adobe.com/devnet/flex/testdrive/assets/test
drive_build_app.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:valueObjects="valueObjects.*" ...>
 <fx:Script>

Create Pages | 29

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_build_app.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_build_app.zip

 <![CDATA[
 (...)
 protected function
 deptDg_creationCompleteHandler(event:FlexEvent):void
 {
 getDepartmentsResult.token =
 employeeService.getDepartments();
 }
]]>
 </fx:Script>
 <s:states>
 <s:State name="Employees"/>
 <s:State name="Departments"/>
 <s:State name="EmployeeDetails"/>
 </s:states>
 <fx:Declarations>
 (...)
 <s:CallResponder id="getEmployeesResult"/>
 <valueObjects:Employee id="employee"/>
 </fx:Declarations>
 <fx:Binding source="empDg.selectedItem as Employee"
 destination="employee"/>

 <s:Label text="XYZ Corporation Directory"
 color="#1239E3" .../>
 <s:Button id="empBtn" enabled.Employees="false"
 enabled.EmployeeDetails="false" .../>
 <s:Button id="deptBtn" enabled.Departments="false" .../>
 <mx:DataGrid id="empDg"
 includeIn="EmployeeDetails,Employees" .../>
 <mx:DataGrid includeIn="Departments" x="36" y="114"
 id="deptDg"
 creationComplete=
 "deptDg_creationCompleteHandler(event)"
 dataProvider="{getDepartmentsResult.lastResult}"
 width="650" height="152">
 <mx:columns>
 <mx:DataGridColumn headerText="Name"
 dataField="name" width="170"/>
 <mx:DataGridColumn headerText="ID"
 dataField="id" width="40"/>
 <mx:DataGridColumn headerText="Manager"
 dataField="manager" width="170"/>
 <mx:DataGridColumn dataField="budget"
 headerText="Budget" width="155"/>
 <mx:DataGridColumn dataField="actualexpenses"
 headerText="Expenses" width="155"/>

30 | Chapter 1: Build an Application in an Hour

 </mx:columns>
 </mx:DataGrid>
 <s:Button includeIn="Departments" x="609" y="293"
 label="Chart data"/>
 <mx:Form includeIn="EmployeeDetails" x="36" y="325">
 <mx:FormItem label="Last Name">
 <s:Label id="lastnameLabel"
 text="{employee.lastname}"/>
 </mx:FormItem>
 <mx:FormItem label="First Name">
 <s:Label id="firstnameLabel"
 text="{employee.firstname}"/>
 </mx:FormItem>
 <mx:FormItem label="Title">
 <s:Label id="titleLabel"
 text="{employee.title}"/>
 </mx:FormItem>
 <mx:FormItem label="Department ID">
 <s:Label id="departmentidLabel"
 text="{employee.departmentid}"/>
 </mx:FormItem>
 <mx:FormItem label="Cell Phone">
 <s:Label id="cellphoneLabel"
 text="{employee.cellphone}"/>
 </mx:FormItem>
 <mx:FormItem label="Office Phone">
 <s:Label id="officephoneLabel"
 text="{employee.officephone}"/>
 </mx:FormItem>
 <mx:FormItem label="Email">
 <s:Label id="emailLabel"
 text="{employee.email}"/>
 </mx:FormItem>
 </mx:Form>
 <mx:Form includeIn="EmployeeDetails" x="308" y="325">
 <mx:FormItem label="Office">
 <s:Label id="officeLabel"
 text="{employee.office}"/>
 </mx:FormItem>
 <mx:FormItem label="Street">
 <s:Label id="streetLabel"
 text="{employee.street}"/>
 </mx:FormItem>
 <mx:FormItem label="City">
 <s:Label id="cityLabel"
 text="{employee.city}"/>
 </mx:FormItem>

Create Pages | 31

 <mx:FormItem label="State">
 <s:Label id="stateLabel"
 text="{employee.state}"/>
 </mx:FormItem>
 <mx:FormItem label="Zipcode">
 <s:Label id="zipcodeLabel"
 text="{employee.zipcode}"/>
 </mx:FormItem>
 <mx:FormItem label="Photo File">
 <s:Label id="photofileLabel"
 text="{employee.photofile}"/>
 </mx:FormItem>
 </mx:Form>
 <s:Button includeIn="EmployeeDetails" x="459" y="293"
 label="Update" id="updateBtn"/>
 <s:Button includeIn="EmployeeDetails,Employees"
 label="Add " id="addBtn" x="615" y="293"/>
 <s:Button includeIn="EmployeeDetails" x="537" y="293"
 label="Delete " id="deleteBtn"/>
 <s:TextInput includeIn="EmployeeDetails,Employees"
 text="Enter last name here ..." width="153"
 id="searchTxt" x="36" y="292"/>
 <s:Button includeIn="EmployeeDetails,Employees"
 label="Search" id="searchBtn" x="197" y="293"/>
</s:Application>

Code Your Interactions
In Flex, when a user interacts with a component, it broadcasts
events such as click, rollOver, or rollOut events. To respond
to an event, you specify an event handler function to be called
when that event occurs.

In this section, you will write event handlers to switch between
the application states when users click buttons, populate the
details form when users select DataGrid rows, and search the
employees when users click buttons.

Step 1: Generate an Event Handler
In Design view, right-click the Departments button and select
Generate Click Handler. Make this the click handler for all
states.

32 | Chapter 1: Build an Application in an Hour

Flash Builder automatically switches to Source mode, and you
will see the following new function:

protected function
 deptBtn_clickHandler(event:MouseEvent):void
{
// TODO Auto-generated method stub
}

You will also see the following click event attribute in the De-
partments Button tag:

<s:Button x="124" y="85" label="Departments"
 id="deptBtn" enabled.Departments="false"
 click.EmployeeDetails="deptBtn_clickHandler(event)"/>

When the user clicks this button in the EmployeeDetails state,
that event handler function will be called. Change the click
event attribute in the Departments Button tag so that the fol-
lowing represents the click handler for all states:

<s:Button x="124" y="85"
 label="Departments" id="deptBtn"
 enabled.Departments="false"
 click ="deptBtn_clickHandler(event)"/>

Step 2: Change to the Departments State on a Button
click Event
Inside the function, switch to the Departments state by setting
the currentState property of the Application to Departments.
Run the application.

The Departments Button click event handler should appear
like the following:

protected function
 deptBtn_clickHandler(event:MouseEvent):void
{
 currentState="Departments";
}

When you run the application, you should be able to click the
Departments button to switch to the Departments state

Code Your Interactions | 33

(shown in Figure 1-25). Notice that the Employees button is
now enabled and the Departments button is disabled.

Figure 1-25. In a browser, switch to the Departments state

Step 3: Change to the Employees State on a Button
click Event
With the Departments state selected in Design mode, generate
an event handler for the Employees button and, inside the
function, switch to the Employees state.

The Employees button click event handler should appear like
the following:

protected function
 empBtn_clickHandler(event:MouseEvent):void
{
 currentState = "Employees";
}

In the Employees Button tag, you can leave the attribute as
click.Departments or change it to click. Both will work be-
cause this button is only enabled and clickable in the Depart-
ments state.

When you run the application, you should now be able to
switch back and forth between the Departments and Employ-
ees states. When you select a row in the employee DataGrid,
nothing happens.

34 | Chapter 1: Build an Application in an Hour

Step 4: Change to the EmployeeDetails State on a
DataGrid change Event
In Source mode, add a change attribute to the empDg DataGrid
and generate a change handler (see Figure 1-26). Inside the
handler, set currentState to EmployeeDetails.

Figure 1-26. Generate a DataGrid change event handler

The DataGrid change event handler should appear as follows:

protected function
 empDg_changeHandler(event:ListEvent):void

{
 currentState="EmployeeDetails";
}

Now when you run the application, you should be able to select
a row in the employee DataGrid and see the details for that
employee, as shown in Figure 1-27.

Step 5: Clear the TextInput Component on a focusIn
Event
In Design mode, select the TextInput component and click the
lightning bolt next to the focusIn event in the Events section
of the Properties Category view (see Figure 1-28). Inside the
generated handler, clear the text field.

Code Your Interactions | 35

Figure 1-27. In a browser, select an employee to view the
EmployeeDetails state

Figure 1-28. Generate a focusIn event handler for the TextInput

Enter the following code inside your focusIn event handler,
making sure the initial value of the search string you specify
here exactly matches the value you specified in the TextInput
tag:

protected function
 searchTxt_focusInHandler(event:FocusEvent):void
{

36 | Chapter 1: Build an Application in an Hour

 if(searchTxt.text=="Enter last name here ...")
 searchTxt.text="";
}

In your TextInput tag, remove the state associated with the
focusIn event so it appears as shown here:

<s:TextInput includeIn="EmployeeDetails,Employees"
 text="Enter last name here ..." width="153"
 id="searchTxt" x="36" y="292"
 focusIn="searchTxt_focusInHandler(event)"/>

Run the application. When you click in the TextInput compo-
nent, the initial help text should disappear.

Step 6: Load New Data on a click Event
Using the Data/Services view, configure the getEmployeesBy
Name() operation to return an array of existing Employee ob-
jects; enter a parameter value of Smith when autodetecting from
sample data. Drag the getEmployeesByName() operation onto
the Search button. Inside the generated event handler, pass the
user-entered value, which is held in searchTxt.text, to the
operation. Change the responder to be the existing
getEmployeesResult responder. Apply the searchBtn click
event to all states.

By default, the following new responder, getEmployeesBy
NameResult, is created:

<s:CallResponder id="getEmployeesByNameResult"/>

This responder is used for the following service call:

protected function
 searchBtn_clickHandler(event:MouseEvent):void
{
 getEmployeesByNameResult.token =
 employeeService.getEmployeesByName(searchTxt.text);
}

You want the results to be displayed in the existing empDg Da-
taGrid, though, so change the responder to be the existing
getEmployeesResult responder whose lastResult property is
already bound to the dataProvider of the DataGrid, as follows:

Code Your Interactions | 37

protected function
 searchBtn_clickHandler(event:MouseEvent):void
{
 getEmployeesResult.token =
 employeeService.getEmployeesByName(searchTxt.text);
}

You are not using the generated getEmployeesByNameResult res-
ponder, so you can delete its definition, shown here:

<s:CallResponder id="getEmployeesByNameResult"/>

Run the application and enter a last name like “Smith” in the
search field, then click Search. A new service call is made to the
server and the responder is populated with this new data, so
the data displayed in the DataGrid changes.

In this exercise, you are calling a method on the server to per-
form the employee filtering. However, because you already re-
turned all the employee records to the client, you can filter the
records locally instead. This is more efficient, because it avoids
unnecessary calls to the server.

Step 7: Use Conditional Logic to Retrieve All or Only
Some Records
Modify the searchBtn click handler so that it calls
getEmployeesByName() if searchTxt.text has a value, and
getEmployees() if it does not.

Your event handler should appear as follows:

protected function
 searchBtn_clickHandler(event:MouseEvent):void
{
 if(searchTxt.text!=""){
 getEmployeesResult.token =
 employeeService.getEmployeesByName(searchTxt.text);
 }
 else{
 getEmployeesResult.token =
 employeeService.getEmployees();
 }
}

38 | Chapter 1: Build an Application in an Hour

Run the application. Search by a name and view the results.
Next, remove any search string and search. You should see all
the employees listed again.

Step 8: Modify Object Styles on a click Event
Add a new Button control, biggerBtn, to the Departments view
(see Figure 1-29). Generate a click handler for it that uses the
setStyle() method to increase the DataGrid fontSize style.

Figure 1-29. Add a Bigger Text button to the Departments view

The click handler should appear as follows:

protected function
 biggerBtn_clickHandler(event:MouseEvent):void
{
 deptDg.setStyle("fontSize",14);
}

You cannot change styles at runtime using the
object.property=value notation you use to set properties. In-
stead, you have to use the setStyle() method. You can set and
apply properties to only one instance of an object, whereas you
can set styles in multiple places (inline, in CSS, or inherited),
so setting a style on one object may also change the style of
other objects. Use a StyleManager class to manage all the
styles.

Run the application, switch to Departments, and click the Big-
ger Text button. The text in the DataGrid should get bigger.

Code Your Interactions | 39

When you finish coding your interactions, your code should
look like the following (you can download the complete sample
code at www.adobe.com/devnet/flex/testdrive/assets/test
drive_build_app.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 import mx.events.ListEvent;

 protected function
 deptBtn_clickHandler(event:MouseEvent):void
 {
 currentState="Departments";
 }
 protected function
 empBtn_clickHandler(event:MouseEvent):void
 {
 currentState="Employees";
 }
 protected function
 empDg_changeHandler(event:ListEvent):void
 {
 currentState="EmployeeDetails";
 }
 protected function
 searchTxt_focusInHandler(event:FocusEvent):void
 {
 if(searchTxt.text=="Enter last name here ... ")
 searchTxt.text="";
 }
 protected function
 searchBtn_clickHandler(event:MouseEvent):void
 {
 if(searchTxt.text!=""){
 getEmployeesResult.token =
 employeeService.getEmployeesByName(
 searchTxt.text);
 }
 else{
 getEmployeesResult.token =
 employeeService.getEmployees();
 }
 }

40 | Chapter 1: Build an Application in an Hour

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_build_app.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_build_app.zip

 protected function
 biggerBtn_clickHandler(event:MouseEvent):void
 {
 deptDg.setStyle("fontSize",16);
 }
]]>
 </fx:Script>
 (...)
 <s:Button id="empBtn"
 click.Departments="empBtn_clickHandler(event)" .../>
 <s:Button id="deptBtn"
 click="deptBtn_clickHandler(event)" .../>
 <mx:DataGrid id="empDg"
 change="empDg_changeHandler(event)" .../>
 (...)
 <s:TextInput id="SearchTxt"
 focusIn="searchTxt_focusInHandler(event)" .../>
 <s:Button id="searchBtn"
 click="searchBtn_clickHandler(event)" .../>
 <s:Button id="biggerBtn"
 click="biggerBtn_clickHandler(event)" .../>
</s:Application>

Congratulations! In about an hour, you’ve built a Flex appli-
cation with multiple states that can load and display data and
perform database queries.

To build on your knowledge, see Chapter 2 to learn about up-
dating your database based on user input, Chapters 3 and 4 to
learn about debugging and deploying your application, and
Chapters 5 and 6 to learn about customizing the application
appearance and using the expressive Flex charting
components.

Code Your Interactions | 41

CHAPTER 2

Modify the Database

In Chapter 1, you retrieved data from a database and displayed
it. In this chapter, you will write your Flex application to per-
form your data CRUD, that is, to create, read, update, and
delete data from the database.

Add Data Using a Form
In this section, you will create a new EmployeeAdd state that
has an input form for users to add a new employee to the
database.

Step 1: Create a New EmployeeAdd State
Create a new EmployeeAdd state based on the EmployeeDe-
tails state. In the new state, delete the two forms and disable
the Add, Delete, and Update Buttons (Figure 2-1).

Step 2: Create an Input Form
From the DataGrid context menu, select Generate Details
Form. In the wizard, make the form editable, do not make a
detail service call, and click Next. In the Property Control
Mapping, choose not to display the id, and arrange the fields
in the order in which you want them displayed (see Figure 2-2).

43

Figure 2-1. Create a new EmployeeAdd state

Figure 2-2. Use the Generate Form wizard to create an editable Details
form

44 | Chapter 2: Modify the Database

Switch to Source mode and look at the generated code. You
will see similar code to that generated in Chapter 1 for the Em-
ployeeDetails state. You will see your new EmployeeAdd state
defined in the states tag and a new Form tag. In this case,
though, the FormItem tags contain TextInput controls instead
of Label controls.

Notice that the text properties of all the TextInput controls in
the FormItem tags are bound to a property of an employee2
object:

<mx:Form includeIn="EmployeeAdd" defaultButton="{button}">
 <mx:FormItem label="lastname">
 <s:TextInput id=" lastnameTextInput"
 text="{employee2.lastname}"/>
 </mx:FormItem>

Look in the Declarations section. You will see the employee2
object defined as an instance of the Employee class, as follows:

<valueObjects:Employee id="employee2"/>

Below the Declarations section, you will see a new Binding tag,
which binds the selectedItem of the empDg DataGrid to this
employee2 variable, as follows:

<fx:Binding source="empDg.selectedItem as Employee"
 destination="employee2"/>

All this code is redundant; employee is equal to employee2, and
the variables are referencing the same object in memory. The
Generate Form wizard does not allow you to specify an existing
object to display (in this case, employee), so it generates and
binds to a new variable, employee2.

Locate the new Button at the end of the new Form. It has the
following click event handler already defined:

<s:Button id="button" label="Submit"
 click="button_clickHandler(event)"/>

Add Data Using a Form | 45

Locate the corresponding handler in the Script block. It sets
the properties of the employee2 object equal to the new values
entered by the user in the TextInput form fields:

protected function
 button_clickHandler(event:MouseEvent):void
{
 employee2.lastname = lastnameTextInput.text;
 employee2.firstname = firstnameTextInput.text;
 employee2.title = titleTextInput.text;
 employee2.departmentid =
 parseInt(departmentidTextInput.text);
 employee2.cellphone = cellphoneTextInput.text;
 employee2.officephone = officephoneTextInput.text;
 employee2.email = emailTextInput.text;
 employee2.office = officeTextInput.text;
 employee2.street = streetTextInput.text;
 employee2.city = cityTextInput.text;
 employee2.state = stateTextInput.text;
 employee2.zipcode = zipcodeTextInput.text;
 employee2.photofile = photofileTextInput.text;
}

Step 3: Use the employee Object Instead of employee2
Delete the binding and declaration tags for employee2 and
change the references to employee2 in the new Form and in the
button_clickHandler() to employee.

Delete the following lines of code:

<fx:Binding source="empDg.selectedItem as Employee"
 destination="employee2"/>
<valueObjects:Employee id="employee2"/>

All the TextInput controls in the new Form should look similar
to the following:

<mx:FormItem label="Last Name">
 <s:TextInput id="lastnameTextInput"
 text="{employee.lastname}"/>
</mx:FormItem>

And all the statements in the button_clickHandler() function
should look similar to the following:

employee.lastname = lastnameTextInput.text;

46 | Chapter 2: Modify the Database

Step 4: Modify the Form Layout
Arrange the input form as shown in Figure 2-3 by dragging out
a second Form container from the Layout section of the Com-
ponents view and dragging FormItems from one Form con-
tainer to another. Edit the label properties and change the
Submit Button label to Add.

Figure 2-3. Lay out the EmployeeAdd state as shown here

Here are some tips for arranging your forms:

• You can use Shift+click to select multiple items and move
them all from one Form container to the other.

• Look at the x and y positions of the two forms in the Em-
ployeeDetails state and use these for the positions of the
new forms so they appear in exactly the same places.

Add Data Using a Form | 47

• To align the Add button with the form fields above it,
place it inside of a FormItem with no label property set,
as follows:

<mx:FormItem>
 <s:Button id="button" label="Add"
 click="button_clickHandler(event)"/>
</mx:FormItem>

Step 5: Switch States When the Add Button Is Clicked
Generate a click handler for the Add button above the form
(not the one in the form) and inside the handler, set the
currentState to EmployeeAdd, and set the employee variable to
a new instance of the Employee class. Make this the click han-
dler for this Button in all states.

Your event handler should appear as follows:

protected function
 addBtn_clickHandler(event:MouseEvent):void
{
 currentState="EmployeeAdd";
 employee=new Employee();
}

Change the addBtn Button control so that it is the click handler
for all states, as follows:

<s:Button includeIn="EmployeeAdd,EmployeeDetails,Employees"
 label="Add" id="addBtn" x="615" y="293"
 enabled.EmployeeAdd="false"
 click="addBtn_clickHandler(event)"/>

Run the application and click the Add button. You should see
a blank input form similar to the one shown in Figure 2-4.

Step 6: Submit Data to the Server
Drag the createEmployee() operation from the Data/Services
panel and drop it on the Add button in the Form. In the gen-
erated handler, pass employee to the service operation.

48 | Chapter 2: Modify the Database

Figure 2-4. In a browser, view the new EmployeeAdd state

Your handler should appear as follows:

protected function
 button_clickHandler(event:MouseEvent):void
{
 employee.lastname = lastnameTextInput.text;
 employee.firstname = firstnameTextInput.text;
 employee.title = titleTextInput.text;
 employee.departmentid =
 parseInt(departmentidTextInput.text);
 employee.cellphone = cellphoneTextInput.text;
 employee.officephone = officephoneTextInput.text;
 employee.email = emailTextInput.text;
 employee.office = officeTextInput.text;
 employee.street = streetTextInput.text;
 employee.city = cityTextInput.text;
 employee.state = stateTextInput.text;
 employee.zipcode = zipcodeTextInput.text;
 employee.photofile = photofileTextInput.text;
 createEmployeeResult.token =
 employeeService.createEmployee(employee);
}

Add Data Using a Form | 49

The following new CallResponder has been created for this
service call:

<s:CallResponder id="createEmployeeResult"/>

Step 7: Update the Local Data
Add a result event attribute to the createEmployeeResult Call-
Responder and generate an event handler (see Figure 2-5). In-
side the handler, set currentState to EmployeeDetails, set the
id for the new employee, and use the addItem() method to add
the new employee to the DataGrid dataProvider.

Figure 2-5. Generate a result event handler for the CallResponder

Your createEmployeeResult CallResponder should appear as
follows:

<s:CallResponder id="createEmployeeResult"
 result="createEmployeeResult_resultHandler(event)"/>

The result event handler should appear as follows:

protected function
 createEmployeeResult_resultHandler(
 event:ResultEvent):void
{
 currentState="EmployeeDetails";
 employee.id=event.result as int;
 empDg.dataProvider.addItem(employee);
}

After you have successfully added the data to the database, the
EmployeeDetails state will be shown with the details for this
new employee. At this point, though, the new employee has
been saved in the database, but not in the collection of data
being displayed in the DataGrid. You need to assign the newly

50 | Chapter 2: Modify the Database

generated id to employee and add employee to the data dis-
played in the DataGrid.

If you look in the TestDrive server-side service file, you will see
that the createEmployee() method returns an integer equal to
the id of the new employee inserted in the database. The data
returned from a server-side method call is stored in the
result property of the event object that is passed to the
result event handler. The id property of employee is data typed
as an integer. The result property of the event object is data
typed as a general object. You have to cast event.result to an
integer to set id equal to it.

NOTE
You will use the Flash Builder debugger to examine the
properties of the event object and other objects in
Chapter 3.

addItem() is a method of the Flex ArrayCollection class. When
the employee data is initially retrieved from the server, it stores
the data as an ArrayCollection of Employee objects as the Da-
taGrid dataProvider.

NOTE
In this example, you are writing code to update both the
server-side data (stored in the database) and the client-
side data (stored in the DataGrid dataProvider). Flash
Builder also has a data management feature you can use
to help synchronize client- and server-side data.

Run the application and add a new employee. You did not
make any of the fields required, but enter at least a last name
so you can easily find your new record. You will have to scroll
in the DataGrid to see your new record.

Add Data Using a Form | 51

Refresh the browser and make sure you see your new employee
in the DataGrid.

Step 8: Select and Show the New Record in the
DataGrid
Inside the createEmployeeResult result handler, set the Data-
Grid selectedItem to employee, set the DataGrid vertical
ScrollPosition to the DataGrid control’s selectedIndex, and
use the validateNow() method to force the DataGrid to update
its display.

Your result event handler should appear as follows:

protected function
 createEmployeeResult_resultHandler(
 event:ResultEvent):void
{
 currentState="EmployeeDetails";
 employee.id=event.result as int;
 empDg.dataProvider.addItem(employee);
 empDg.selectedItem =employee;
 empDg.verticalScrollPosition=empDg.selectedIndex;
 empDg.validateNow();
}

For performance reasons, the DataGrid sometimes defers
updating its display. The validateNow() method forces it to
update its display. Although appropriate here, be careful using
validateNow(), because it can cause performance problems if
called too often.

Run the application and add a new employee. The new em-
ployee should now be selected and displayed in the DataGrid
(Figure 2-6).

52 | Chapter 2: Modify the Database

Figure 2-6. The newly added employee is selected and displayed in the
DataGrid

After you’ve added the new employee, your code should look
like the following (you can download the complete sample
code at www.adobe.com/devnet/flex/testdrive/assets/test
drive_modify_data.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 import mx.rpc.events.ResultEvent;

 protected function
 button_clickHandler(event:MouseEvent):void
 {
 employee.lastname = lastnameTextInput.text;
 employee.firstname = firstnameTextInput.text;
 employee.title = titleTextInput.text;
 employee.departmentid =
 parseInt(departmentidTextInput.text);
 employee.cellphone = cellphoneTextInput.text;
 employee.officephone =

Add Data Using a Form | 53

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip

 officephoneTextInput.text;
 employee.email = emailTextInput.text;
 employee.office = officeTextInput.text;
 employee.street = streetTextInput.text;
 employee.city = cityTextInput.text;
 employee.state = stateTextInput.text;
 employee.zipcode = zipcodeTextInput.text;
 employee.photofile = photofileTextInput.text;
 createEmployeeResult.token =
 employeeService.createEmployee(employee);
 }
 protected function
 addBtn_clickHandler(event:MouseEvent):void
 {
 currentState="EmployeeAdd";
 employee=new Employee();
 }
 protected function
 createEmployeeResult_resultHandler(
 event:ResultEvent):void
 {
 currentState="EmployeeDetails";
 employee.id=event.result as int;
 empDg.dataProvider.addItem(employee);
 empDg.selectedItem =employee;
 empDg.verticalScrollPosition=
 empDg.selectedIndex;
 empDg.validateNow();
 }
]]>
 </fx:Script>
 <s:states>
 (...)
 <s:State name="EmployeeAdd"/>
 </s:states>
 <fx:Declarations>
 (...)

 <s:Button id="empBtn" enabled.EmployeeAdd="false" .../>
 <mx:DataGrid
 includeIn="EmployeeAdd,EmployeeDetails,Employees" .../>
 <s:Button id="updateBtn"
 includeIn="EmployeeAdd,EmployeeDetails"
 enabled.EmployeeAdd="false" .../>
 <s:Button id="addBtn"
 includeIn="EmployeeAdd,EmployeeDetails,Employees" .../>
 <s:Button id="deleteBtn"

54 | Chapter 2: Modify the Database

 includeIn="EmployeeAdd,EmployeeDetails"
 enabled.EmployeeAdd="false" .../>
 <s:TextInput id="searchTxt"
 includeIn="EmployeeAdd,EmployeeDetails,Employees" .../>
 <s:Button id="searchBtn"
 includeIn="EmployeeAdd,EmployeeDetails,Employees" .../>

 <mx:Form includeIn="EmployeeAdd" defaultButton="{button}"
 x="63" y="325">
 <mx:FormItem label="Last Name">
 <s:TextInput id="lastnameTextInput"
 text="{employee.lastname}"/>
 </mx:FormItem>
 <mx:FormItem label="First Name">
 <s:TextInput id="firstnameTextInput"
 text="{employee.firstname}"/>
 </mx:FormItem>
 <mx:FormItem label="Title">
 <s:TextInput id="titleTextInput"
 text="{employee.title}"/>
 </mx:FormItem>
 <mx:FormItem label="Department ID">
 <s:TextInput id="departmentidTextInput"
 text="{employee.departmentid}"/>
 </mx:FormItem>
 <mx:FormItem label="Cell Phone">
 <s:TextInput id="cellphoneTextInput"
 text="{employee.cellphone}"/>
 </mx:FormItem>
 <mx:FormItem label="Office Phone">
 <s:TextInput id="officephoneTextInput"
 text="{employee.officephone}"/>
 </mx:FormItem>
 <mx:FormItem label="Email">
 <s:TextInput id="emailTextInput"
 text="{employee.email}"/>
 </mx:FormItem>
 </mx:Form>
 <mx:Form includeIn="EmployeeAdd" x="372" y="325">
 <mx:FormItem label="Office">
 <s:TextInput id="officeTextInput"
 text="{employee.office}"/>
 </mx:FormItem>
 <mx:FormItem label="Street">
 <s:TextInput id="streetTextInput"
 text="{employee.street}"/>
 </mx:FormItem>

Add Data Using a Form | 55

 <mx:FormItem label="City">
 <s:TextInput id="cityTextInput"
 text="{employee.city}"/>
 </mx:FormItem>
 <mx:FormItem label="State">
 <s:TextInput id="stateTextInput"
 text="{employee.state}"/>
 </mx:FormItem>
 <mx:FormItem label="Zipcode">
 <s:TextInput id="zipcodeTextInput"
 text="{employee.zipcode}"/>
 </mx:FormItem>
 <mx:FormItem label="Photo File">
 <s:TextInput id="photofileTextInput"
 text="{employee.photofile}"/>
 </mx:FormItem>
 <mx:FormItem>
 <s:Button id="button" label="Add"
 click="button_clickHandler(event)"/>
 </mx:FormItem>
 </mx:Form>
</s:Application>

Update Data Using a Form
In the previous section, you used an input form to add a new
employee to the database. In this section, you will use the same
form to update the record for an existing employee in the
database.

Step 1: Create a New EmployeeUpdate State
Create the new state based on the EmployeeAdd state. Enable
the Delete button. Change the label of the Add button in the
Form to Update, as shown in Figure 2-7.

56 | Chapter 2: Modify the Database

Figure 2-7. Lay out the EmployeeUpdate state as shown here

Step 2: Switch States When the Update Button Is
Clicked
Generate a click handler for the main Update button (not the
one in the form) that sets the currentState to EmployeeUp-
date. Make it the handler for all states.

Your updateBtn Button tag should appear as follows:

<s:Button
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate"
 x="459" y="293" label="Update"
 id="updateBtn" enabled.EmployeeAdd="false"
 enabled.EmployeeUpdate="false"
 click="updateBtn_clickHandler(event)"/>

The click event handler should appear as follows:

protected function
 updateBtn_clickHandler(event:MouseEvent):void
{

Update Data Using a Form | 57

 currentState="EmployeeUpdate";
}

Run the application and click the Update button. You should
see your input form populated with the values of the selected
employee, as shown in Figure 2-8.

Figure 2-8. View the selected employee details in the input form

Step 3: Submit Changes to the Server
In the EmployeeUpdate state, drag the updateEmployee() op-
eration from the Data/Services panel and drop it on the Update
button in the form. In the handler, pass the employee variable
to updateEmployee() and use conditional logic to call the ap-
propriate service based on whether the employee already has a
nonzero id.

Your handler should appear as follows:

protected function
 button_clickHandler(event:MouseEvent):void
{
 employee.lastname = lastnameTextInput.text;

58 | Chapter 2: Modify the Database

 employee.firstname = firstnameTextInput.text;
 employee.title = titleTextInput.text;
 employee.departmentid =
 parseInt(departmentidTextInput.text);
 employee.cellphone = cellphoneTextInput.text;
 employee.officephone = officephoneTextInput.text;
 employee.email = emailTextInput.text;
 employee.office = officeTextInput.text;
 employee.street = streetTextInput.text;
 employee.city = cityTextInput.text;
 employee.state = stateTextInput.text;
 employee.zipcode = zipcodeTextInput.text;
 employee.photofile = photofileTextInput.text;
 if(employee.id==0){
 createEmployeeResult.token =
 employeeService.createEmployee(employee);
 }
 else{
 updateEmployeeResult.token =
 employeeService.updateEmployee(employee);
 }
}

NOTE
This is the handler you have from the previous state with
a new service call appended.

Step 4: After the Update, Switch to the
EmployeeDetails State
Add a result event attribute to the updateEmployeeResult Call-
Responder and generate an event handler. Inside the handler,
set currentState to EmployeeDetails.

Your updateEmployeeResult CallResponder should appear as
follows:

<s:CallResponder id="updateEmployeeResult"
 result="updateEmployeeResult_resultHandler(event)"/>

Update Data Using a Form | 59

The result event handler should appear as follows:

protected function
 updateEmployeeResult_resultHandler(
 event:ResultEvent):void
{
 currentState="EmployeeDetails";
}

After the data is updated successfully in the database, the Em-
ployeeDetails state will be shown with the details for this
employee.

Run the application and change the properties for an existing
employee. Refresh the browser and make sure you see your
updated employee data in the DataGrid.

Your code should look like the following (you can download
the complete sample code at www.adobe.com/devnet/flex/test
drive/assets/testdrive_modify_data.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 protected function
 button_clickHandler(event:MouseEvent):void
 {
 employee.lastname = lastnameTextInput.text;
 employee.firstname = firstnameTextInput.text;
 (...)
 if(employee.id==0){
 createEmployeeResult.token =
 employeeService.createEmployee(employee);
 }
 else{
 updateEmployeeResult.token =
 employeeService.updateEmployee(employee);
 }
 }
 protected function
 updateBtn_clickHandler(event:MouseEvent):void
 {
 currentState="EmployeeUpdate";
 }
 protected function

60 | Chapter 2: Modify the Database

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip

 updateEmployeeResult_resultHandler(
 event:ResultEvent):void
 {
 currentState="EmployeeDetails";
 }
]]>
 </fx:Script>
 <s:states>
 (...)
 <s:State name="EmployeeUpdate"/>
 </s:states>
 <fx:Declarations>
 (...)
 <s:CallResponder id="updateEmployeeResult"
 result="updateEmployeeResult_resultHandler(event)"/>
 </fx:Declarations>
 (...)
 <s:Button id="empBtn"
 enabled.EmployeeUpdate="false" .../>
 <mx:DataGrid id="empDg"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate,
 Employees" .../>

 <s:Button id="updateBtn"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate"
 enabled.EmployeeUpdate="false"
 click="updateBtn_clickHandler(event)"/>
 <s:Button id="addBtn"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate,
 Employees"
 enabled.EmployeeAdd="false" .../>
 <s:Button id="deleteBtn"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate"
 enabled.EmployeeUpdate="true" .../>
 <s:TextInput id="searchTxt"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate,
 Employees" .../>
 <s:Button id="searchBtn"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate,
 Employees" .../>
 <mx:Form includeIn="EmployeeAdd,EmployeeUpdate" x="63"
 y="325" .../>
 <mx:Form includeIn="EmployeeAdd,EmployeeUpdate" x="372"
 y="325" ...>
 (...)
 </mx:FormItem>
 <s:Button id="button" label="Add"

Update Data Using a Form | 61

 click="button_clickHandler(event)"
 label.EmployeeUpdate="Update"/>
 </mx:FormItem>
 </mx:Form>
</s:Application>

Update Data Using the DataGrid
In the previous section, you used an input form to make
changes to an employee record. In this section, you’ll let users
make changes directly in the DataGrid and propagate those
changes to the database.

Step 1: Make the empDg DataGrid Editable in All States
The DataGrid tag should appear as follows:

<mx:DataGrid x="36" y="114" id="empDg"
 creationComplete="empDg_creationCompleteHandler(event)"
 dataProvider="{getEmployeesResult.lastResult}"
 width="650"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate,
 Employees"
 change="empDg_changeHandler(event)" editable="true">

Step 2: Generate an itemEditEnd Event Handler for
the DataGrid
Inside the handler, call the updateEmployee() method and pass
to it the selected employee, employee.

Your empDg DataGrid tag should appear as follows:

<mx:DataGrid x="36" y="114" id="empDg"
 creationComplete="empDg_creationCompleteHandler(event)"
 dataProvider="{getEmployeesResult.lastResult}"
 width="650"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate,
 Employees"
 change="empDg_changeHandler(event)"
 editable="true"
 itemEditEnd="empDg_itemEditEndHandler(event)">

62 | Chapter 2: Modify the Database

The itemEditEnd event handler should appear as shown here:

protected function
 empDg_itemEditEndHandler(event:DataGridEvent):void
{
 employeeService.updateEmployee(employee);
}

In this case, you’re not going to do anything after the data is
successfully updated, so you don’t need to specify a CallRes-
ponder to handle the results.

Run the application and make changes to the data in the Da-
taGrid (Figure 2-9).

Figure 2-9. Edit employee data in the DataGrid

Refresh the browser page and see that your changes were not
saved to the database.

What’s going on here is that the itemEditEnd event is broadcast
after the user has finished editing a cell but before the DataGrid
has updated its dataProvider with the new value. You need to
update the employee object with the new property value before
sending it to the server.

Update Data Using the DataGrid | 63

Step 3: Update employee with the New Value
Inside the handler, set employee[event.dataField] equal to
(empDg.itemEditorInstance as mx.controls.TextInput).text.

The itemEditEnd event handler should appear as follows:

protected function
 empDg_itemEditEndHandler(event:DataGridEvent):void
{
 employee[event.dataField]=
 (empDg.itemEditorInstance
 as mx.controls.TextInput).text;
 employeeService.updateEmployee(employee);
}

event.dataField is a reference to the property of the object be-
ing edited, for example title.

NOTE
In ActionScript 3.0, you can access a property one of two
ways: using dot syntax (for example, employee.last
name); or passing a string between square brackets to the
parent (for example, employee[event,dataField]). Dot
syntax is typically easier to work with, but in certain
cases it can be helpful to access properties by name using
strings.

empDg.itemEditorInstance is a reference to the component be-
ing used in the DataGrid cell to get the new data from the user,
in this case a TextInput control that has a text property. The
newly entered value will be available in the text property of
this object.

Run the application and make changes to the data in the Da-
taGrid. Refresh the browser page and see that your changes are
now successfully saved to the database.

64 | Chapter 2: Modify the Database

In this example, you are sending updates to the server every
time the user changes data in one DataGrid cell. If a lot of
changes are going to be made, you may want to wait and submit
all changes to the server at once.

After you’ve updated the data, your code should look like the
following (you can download the complete sample code at
www.adobe.com/devnet/flex/testdrive/assets/testdrive_mod
ify_data.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 import mx.events.DataGridEvent;

 protected function
 empDg_itemEditEndHandler(event:DataGridEvent):void
 {
 employee[event.dataField]=(empDg.itemEditorInstance
 as mx.controls.TextInput).text;
 employeeService.updateEmployee(employee);
 }
]]>
 </fx:Script>
 (...)
 <mx:DataGrid x="36" y="114" id="empDg"
 creationComplete="empDg_creationCompleteHandler(event)"
 dataProvider="{getEmployeesResult.lastResult}"
 width="650" includeIn="EmployeeAdd,EmployeeDetails,
 EmployeeUpdate,Employees"
 change="empDg_changeHandler(event)" editable="true"
 itemEditEnd="empDg_itemEditEndHandler(event)">
 <mx:columns>
 <mx:DataGridColumn headerText="Last Name"
 dataField="lastname"/>
 <mx:DataGridColumn headerText="First Name"
 dataField="firstname"/>
 <mx:DataGridColumn headerText="Title"
 dataField="title" width="170"/>
 <mx:DataGridColumn headerText="Cell Phone"
 dataField="cellphone"/>
 <mx:DataGridColumn headerText="Email"
 dataField="email" width="130"/>
 </mx:columns>

Update Data Using the DataGrid | 65

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip

 </mx:DataGrid>
 (...)
 </s:Application>

Delete Data
In this section, you will delete data from the database.

Step 1: Call the Service deleteEmployee() Operation
In EmployeeDetails view, drag the deleteEmployee() operation
out and drop it on the Delete button. In the newly generated
handler, pass the id of the selected employee.

Your handler should appear as follows:

protected function
 deleteBtn_clickHandler(event:MouseEvent):void
{
 deleteEmployeeResult.token =
 employeeService.deleteEmployee(employee.id);
}

Your deleteBtn Button tag should appear as follows:

<s:Button
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate"
 x="537" y="293" label="Delete "
 id="deleteBtn" enabled.EmployeeAdd="false"
 enabled.EmployeeUpdate="true"
 click="deleteBtn_clickHandler(event)"/>

Step 2: Update the Local Data
Add a result event attribute to the deleteEmployeeResult Call-
Responder and generate an event handler. Inside the handler,
set currentState to Employees and use the removeItemAt()
method to remove the employee from the DataGrid
dataProvider.

66 | Chapter 2: Modify the Database

Your deleteEmployeeResult CallResponder should appear as
follows:

<s:CallResponder id="deleteEmployeeResult"
 result="deleteEmployeeResult_resultHandler(event)"/>

The result event handler should appear as follows:

protected function
 deleteEmployeeResult_resultHandler(
 event:ResultEvent):void
{
 empDg.dataProvider.removeItemAt(empDg.selectedIndex);
 currentState="Employees";
}

When you call the deleteEmployee() service operation, the em-
ployee is deleted from the database, but not from the collection
of data being displayed in the DataGrid. You need to remove
it from the data displayed in the DataGrid by removing it from
the DataGrid’s dataProvider.

removeItemAt() is a method of the Flex ArrayCollection class.
When the employee data was initially retrieved from the server,
Flex stored the data as an ArrayCollection of Employee objects
as the DataGrid dataProvider.

Run the application and delete an employee—preferably one
of the new ones you added. Refresh the browser and make sure
you no longer see the employee you deleted in the DataGrid.

Congratulations! You have performed all your data CRUD
from a Flex application: you created, read, updated, and de-
leted data from the database.

When you complete this module, your code should look like
the following (you can download the complete sample code at
www.adobe.com/devnet/flex/testdrive/assets/testdrive_mod
ify_data.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 protected function

Delete Data | 67

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_modify_data.zip

 deleteBtn_clickHandler(event:MouseEvent):void
 {
 deleteEmployeeResult.token =
 employeeService.deleteEmployee(employee.id);
 }
 protected function
 deleteEmployeeResult_resultHandler(
 event:ResultEvent):void
 {
 empDg.dataProvider.removeItemAt(
 empDg.selectedIndex);
 currentState="Employees";
 }
]]>
 </fx:Script>
 <fx:Declarations>
 (...)
 <s:CallResponder id="deleteEmployeeResult"
 result="deleteEmployeeResult_resultHandler(event)"/>
 </fx:Declarations>
 (...)
 <s:Button id="deleteBtn"
 includeIn="EmployeeAdd,EmployeeDetails,EmployeeUpdate"
 x="537" y="293" label="Delete "
 enabled.EmployeeAdd="false"
 enabled.EmployeeUpdate="true"
 click="deleteBtn_clickHandler(event)"/>
 (...)
</s:Application>

68 | Chapter 2: Modify the Database

CHAPTER 3

Test and Debug Your Code

In the previous two chapters, you built Flex applications that
retrieve, display, and modify data from a database. In this
chapter, you will test and debug your code. No code is written
in this chapter—the exercises here execute the code in the file
TestDrive_test_debug_2.mxml, which is included in the sample
code download at www.adobe.com/devnet/flex/testdrive/assets/
testdrive_test_debug.zip.

Test Server-Side Code
In this section, you will use the Flash Builder Test Operation
to test your server-side code—even before writing any Flex
code. This is useful to make sure your server-side operations
are all working before you call them in your application.

Step 1: Test a Service Operation That Returns Data
Right-click the getEmployees() operation in the Data/Services
view and select Test Operation. Click the Test button in the
Test Operation view.

You will see all the return data displayed in the Test Operation
view (Figure 3-1).

69

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_test_debug.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_test_debug.zip

NOTE
The Test Operation window may open in the bottom
pane of your Flash Builder 4 workspace. To expand it,
either drag the boundary higher to expand the size of the
bottom pane or double-click the Test Operation tab to
maximize it.

Figure 3-1. The Test Operation tab displays the return data

70 | Chapter 3: Test and Debug Your Code

NOTE
For Java developers: In the Test Operation tab, you
will see an employee object that is an array of Employee
objects.

Step 2: Test a Service Operation That Requires an Input
Parameter
Select the getEmployeesById() operation from the drop-down
list in the Test Operation tab. Enter a value for the argument
and click Test. The getEmployeesById() operation is invoked
with the value you specified, and the return data is displayed
in the Test Operation tab (Figure 3-2).

Step 3: Test a Service Operation That Requires a
Complex Input Parameter
Select the createEmployee() operation in the Test Operation
tab. Click in the Enter Value field and click the ellipsis button.
A pop-up window similar to the one shown in Figure 3-3 will
appear for you to enter input data. You can pass an object literal
to the server using this pop-up window. However, because you
know the value object’s type in this case, you can close this
window without entering anything and configure the object
elsewhere. Close this window.

Test Server-Side Code | 71

NOTE
For Java developers: Your Input Argument window
will look different because your method already knows
it needs an Employee object. You can skip Steps 4 and
5 below and just enter test values here (as shown in
Figure 3-5) and then test the operation. Be sure to enter
integers for id and departmentid and only two characters
for state. It doesn’t matter what id you specify, it will
not be used; the database will automatically generate a
value for it when the data is inserted.

Figure 3-2. Test the getEmployeesById() service operation

72 | Chapter 3: Test and Debug Your Code

Step 4: Configure the createEmployee() Operation
Return Type
Return to the Data/Services view, right-click createEm
ployee(), and select Configure Return Type. In the dialog box,
autodetect from sample data, change the type from Object to
Employee, and click in the Enter Value field (Figure 3-4). Click
the ellipsis button that appears and enter values for each
Employee field (Figure 3-5). Be sure to enter integers for
departmentid and id, and only two characters for state. It does
not matter what id you specify because it will not be used; the
database will automatically generate a value for it when the
data is inserted.

Figure 3-3. You will be asked for an input object when testing the
createEmployee() operation

Test Server-Side Code | 73

You should now see parameter and return types (Employee and
int, respectively) specified for the createEmployee() operation
in the Data/Services panel.

Step 5: Test the createEmployee() Operation Again
Right-click createEmployee() in the Data/Services view and se-
lect Test Operation. Click the Test button in the Test Opera-
tion view. This time, you will see the test values you specified
while configuring the return type already entered in the Enter
Value field.

After you test the operation, you should see an integer dis-
played as the response value, as shown in Figure 3-6. A new
employee was successfully added to the database. If you run
your application again, you will see this new employee in the
DataGrid.

Figure 3-4. Specify the data type when configuring the
createEmployee() return type

74 | Chapter 3: Test and Debug Your Code

Trace Network Traffic
In this section, you will use the Flash Builder Network Monitor
to monitor the traffic between your application and the server.
This lets you quickly and easily see the data being sent to and
returned from the server.

Step 1: Enable the Network Monitor
Open the Network Monitor view, enable the Network Monitor
(Figure 3-7), and run your application.

Figure 3-5. Specify input arguments when configuring the
createEmployee() return type

Trace Network Traffic | 75

Figure 3-6. Test the createEmployee() service operation

Figure 3-7. Enable the Network Monitor

Before you do anything in the application, return to Flash
Builder and look at the Network Monitor. You will see two
requests: client_ping and getEmployees (see Figure 3-8). The
Flex data service uses the client_ping operation to check the
server’s responsiveness before it sends any actual requests. The
getEmployees operation is the initial call to the server-side
getEmployees() method to populate the DataGrid. The time
each request took is also displayed.

76 | Chapter 3: Test and Debug Your Code

Step 2: View the getEmployees() Response
Select the getEmployees operation in the Network Monitor’s
lefthand panel and look at the request and response data for it
in the righthand panel (Figure 3-9). The return type is Action
Message Format (AMF), a binary format Flash Remoting uses
to make calls to server-side classes.

NOTE
For Java developers: Each of your objects will be of
type services.Employee.

Notice the three buttons in the upper-right corner to view the
data in tree, raw, or hex formats.

Step 3: View Network Traffic Data for Additional
Operations
Return to your application in the browser and add, update, and
delete data. Return to the Network Monitor and explore the
data for the service calls. When you are done, disable the Net-
work Monitor. Be sure to look at the request data sent to the
server when an employee is created or updated (Figure 3-10).

Figure 3-8. View the network traffic between the application and the
server

Trace Network Traffic | 77

NOTE
For Java developers: Your object will be of type
services.Employee.

Figure 3-9. View data returned from the getEmployees() operation

78 | Chapter 3: Test and Debug Your Code

Trace Variables
In this section, you will use the Flash Builder debugger and the
trace() function to display values of variables at runtime. To
debug applications, you must have the debug version of Flash
Player installed for your browser. Debug versions of Flash
Player are installed when Flash Builder is installed.

Step 1: Trace Employee-Related Variables
Inside the DataGrid itemEditEnd handler, called empDg_itemE
ditEndHandler(), use the trace() function to display
employee.id, employee, and empDg.dataProvider.

Your handler should appear as follows:

protected function
 empDg_itemEditEndHandler(event:DataGridEvent):void
{
 trace(employee.id);
 trace(employee);
 trace(empDg.dataProvider);

Figure 3-10. View request data for an updateEmployee() operation
call

Trace Variables | 79

 employee[event.dataField]=(empDg.itemEditorInstance
 as mx.controls.TextInput).text;
 employeeService.updateEmployee(employee);

Step 2: Debug the Application
Click the Debug button or select Run→Debug TestDrive to de-
bug the application. Edit a cell, then return to Flash Builder
and access the Console view.

For the first trace of employee.id, you will see the value for the
employee you edited (as shown in Figure 3-11). For the second
trace of employee, you will see [object Employee], indicating it
is a complex object of type Employee; however, you won’t see
any of the property values. For the third trace of empDg.data
Provider, you will see a comma-delimited list of Employee ob-
jects, indicating it is an array of Employee objects, but again,
you will not see individual property values.

Figure 3-11. View employee-related variables traced in the Console
view

Step 3: Stop the Debugger and Switch Perspectives
Click one of the red Terminate buttons, then click the Flash
and Flash Debug buttons in the upper-right corner (Fig-
ure 3-12) to switch between the development and debugging
perspectives. You should have the development perspective
open for this exercise. If you do not see both buttons, click the
left edge of the tab and drag it to the left until you see them.

80 | Chapter 3: Test and Debug Your Code

Figure 3-12. Switch between the development and debugging
perspectives

Step 4: Trace Event-Related Variables
Inside the DataGrid itemEditEnd handler, trace event and
event.dataField. Debug the application and edit a cell.

For the first trace of event, you will see [Event type="itemEnd"
bubbles=false cancelable=true eventPhase=2]. This indicates
it is an object of type Event, and some of its properties and their
values are listed (as shown in Figure 3-13). For the second trace
of event.dataField, you will see the name of the Employee
property you just edited in the DataGrid. When you are fin-
ished, stop the debugger.

Figure 3-13. View event-related variables traced in the Console view

Step 5: Trace the Value of the Edited DataGrid Cell
Trace employee[event.dataField] before and after the assign-
ment statement. Debug the application and edit a cell.

Trace Variables | 81

Your handler should appear as follows:

protected function
 empDg_itemEditEndHandler(event:DataGridEvent):void
{
 trace(employee.id);
 trace(employee);
 trace(empDg.dataProvider);

 trace(event);
 trace(event.dataField);
 trace(employee[event.dataField]);
 employee[event.dataField]=
 (empDg.itemEditorInstance
 as mx.controls.TextInput).text;
 trace(employee[event.dataField]);
 employeeService.updateEmployee(employee);
}

You should see both the initial and final values of the property
you edited in the DataGrid (Figure 3-14). When the
itemEditEnd event is broadcast, the DataGrid dataProvider has
not yet been updated with the new data.

Figure 3-14. View the value of the edited cell traced in the Console view

When you are finished, stop the debugger. Your code should
look like the following:

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 protected function
 empDg_itemEditEndHandler(event:DataGridEvent):void

82 | Chapter 3: Test and Debug Your Code

 {
 trace(employee.id);
 trace(employee);
 trace(empDg.dataProvider);
 trace(event);
 trace(event.dataField);
 trace(employee[event.dataField]);
 employee[event.dataField]=
 (empDg.itemEditorInstance
 as mx.controls.TextInput).text;
 trace(employee[event.dataField]);
 employeeService.updateEmployee(employee);
 }
]]>
 </fx:Script>
 (...)
</s:Application>

Use Breakpoints
Tracing is a useful tool, but for even a medium-sized applica-
tion it may not be feasible to trace out everything you want to
monitor. Your Console window can become cluttered with
lines of text, making it difficult to find the line you’re looking
for as you debug. It is often a better practice to use breakpoints
to examine your application during runtime.

In this section, you will use the Flash Builder debugger to debug
your Flex code. You will add breakpoints to stop code execu-
tion inside an event handler and look at the values of variables
as you step through your code.

Step 1: Add a Breakpoint
Locate the marker bar to the left of the line numbers. If the line
numbers feature is not visible, turn line numbers on in Eclipse.
Double-click the marker bar next to the first line of code inside
the DataGrid itemEditEnd handler, empDg_itemEditEndHandler
(shown in Figure 3-15). Debug the application and edit a cell.

Use Breakpoints | 83

Figure 3-15. Select the first line of code in the
empDg_itemEditEndHandler

After you edit a cell in the browser, the Flash Builder will be
displayed automatically (or you may see it flashing in your dock
or taskbar and need to navigate to it manually), and you will
see an arrow next to the first line of code inside the handler,
indicating that code execution has stopped there (Figure 3-16).

Figure 3-16. Locate where code execution stopped

Step 2: Look at Variables in the Variables View
Variables view will display two variables, this and event (Fig-
ure 3-17). this is a reference to the application itself, and
event is the variable passed to empDg_itemEditEndHandler().
Locate the event.dataField property, the reference to the field
you edited in the DataGrid.

Step 3: Look at the Inherited Properties of the event
Object
Drill down into the event object’s inherited properties and then
into the currentTarget property (Figure 3-18).

84 | Chapter 3: Test and Debug Your Code

Figure 3-17. View variables in the Variables view

currentTarget is a reference to the empDg DataGrid, the object
listening for the event that was broadcast. Drill down into
the currentTarget object’s properties and locate the
dataProvider property. The dataProvider is an ArrayCollection
(a Flex-managed array) of Employee objects. Look at the values
for one of the Employee objects.

Figure 3-18. Drill down into the event object’s inherited currentTarget
property

Use Breakpoints | 85

NOTE
You can double-click the Variables tab (or any tab in
Flash Builder) to view it in full-screen mode. This allows
you to see more variables at a time. Double-click the tab
again to return it to its initial size.

Locate the currentTarget object’s itemEditorInstance prop-
erty. It is an instance of the TextInput class, and that object has
a text property. In your code, you updated the employee ob-
ject’s property with the value contained in this value:
(empDg.itemEditorInstance as mx.controls.TextInput).text.

Step 4: Step into Your Code
Click the Step Into button (Figure 3-19) 10 or more times and
watch as the debugger steps through your code. Stop when in
the debugger gets to a different file and click the Step Return
button to return code execution back to your MXML file. Var-
ious files will open and close as code in other classes executes.

Figure 3-19. Use the buttons in the Debug view toolbar to step through
code

86 | Chapter 3: Test and Debug Your Code

You can continue to step through code and watch the values
of variables in the Variables view, but if you are interested in
watching the value of one or more particular variables, you can
explicitly watch them instead.

Step 5: Watch the employee[event.dataField]
Variable
Select employee[event.dataField] anywhere inside the
empDg_itemEditEndHandler() handler and select Create Watch
Expression. You should see the expression listed in the Ex-
pressions view, as shown in Figure 3-20.

Figure 3-20. Create a watch expression

Step 6: Step Through Code and Watch the Expression
Change Value
Use the Step Into, Step Over, and Step Return buttons and see
the value of the watched expression change from the initial
value of the DataGrid cell to the edited value (Figure 3-21).

Figure 3-21. Watch an expression change value; in this case,
“Hitchhiker” changes to “Hitchhiker2”

Stop the debugger.

Use Breakpoints | 87

Congratulations! You’ve learned to use the Flash Builder Test
Operation to test your server-side code, the Flash Builder
Network Monitor to trace network traffic between your Flex
application and the server, and the Flash Builder debugger to
debug your Flex application.

When you complete this exercise, your code should look like
the following (you can download the complete sample code at
www.adobe.com/devnet/flex/testdrive/assets/testdrive_test_de
bug.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 protected function
 empDg_itemEditEndHandler(
 event:DataGridEvent):void
 {
 trace(employee.id);
 trace(employee);
 trace(empDg.dataProvider);
 trace(event);
 trace(event.dataField);
 trace(employee[event.dataField]);
 employee[event.dataField]=
 (empDg.itemEditorInstance
 as mx.controls.TextInput).text;
 trace(employee[event.dataField]);
 employeeService.updateEmployee(employee);
 }
]]>
 </fx:Script>
 (...)
</s:Application>

88 | Chapter 3: Test and Debug Your Code

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_test_debug.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_test_debug.zip

CHAPTER 4

Deploy Your Application to a
Web Server

In the previous three chapters, you learned to build and debug
a Flex application. In this chapter, you will learn to deploy your
application to a web server.

Create a Release Version
The first task is to create a release version of the application.
When you are developing your application, a debug version of
your application is created and stored in the project’s bin-
debug folder. This SWF file includes additional code and met-
adata that the debugger uses. When you are done debugging
and ready to deploy, you need to create a release build of the
application—a smaller, nondebug version of the SWF file.

Step 1: Create a Release Build
In Flash Builder, Select Project→Export Release Build. In the
Export Release Build wizard, select your project and applica-
tion and specify where you want the release build saved.
Figure 4-1 shows an example for a local PHP Zend server.

89

If you look in the Package Explorer, you will now see a bin-
release folder in your project, like the one shown in Fig-
ure 4-2. This is a pointer to the export folder you just specified.

Figure 4-2. View the bin-release folder

Figure 4-1. Creating a release build for a local PHP Zend server

90 | Chapter 4: Deploy Your Application to a Web Server

The bin-debug and bin-release folders contain many files in ad-
dition to the SWF file. You will learn about these different files
later in the chapter.

Step 2: Compare Application File Sizes
Right-click the SWF file in the bin-debug directory and select
Properties to view its location and size. Repeat for the SWF file
in the bin-release folder.

The release SWF file is typically 100 KB or less in size.

Include Your Application on a Web Page
In this section, you will learn how to include your Flex appli-
cation on a web page and deploy it to a web server. You will
learn what code you need to add to a web page to load your
Flex application and what additional files you need to place on
the web server along with the SWF file.

To view your application, the user needs Flash Player—more
specifically, a particular version of Flash Player. This means the
web page that embeds your application must also contain code
to check for the presence of the minimum required version of
Flash Player and code to help users upgrade or get Flash Player
if their system does not meet the requirements.

Step 1: Look at the html-template Files
Look at the files used to generate your browser-embedded
application (shown in Figure 4-3).

The files you see in this folder will depend upon your project
settings.

Include Your Application on a Web Page | 91

Figure 4-3. View the html-template files

By default, when you build your application, these template
files are used to generate the HTML file and other files that are
placed in the bin-debug and bin-release folders. They contain
variables that are populated by project properties or applica-
tion tag attributes. The next two steps discuss the purpose of
each file.

Step 2: Open TestDrive.html
The TestDrive.html file is in the bin-release folder. Look at the
generated code for embedding the Flex application.

The primary code for checking for the presence and minimum
version of Flash Player is provided by SWFObject 2, a
standards-based library for embedding SWF files in HTML
pages. The following code includes the library in the web page:

<script type="text/javascript"
 src="swfobject.js"></script>

92 | Chapter 4: Deploy Your Application to a Web Server

The SWF file is embedded by calling the embed() method of
swfobject, as follows:

swfobject.embedSWF(
 "TestDrive.swf", "flashContent", "100%", "100%",
 swfVersionStr, xiSwfUrlStr, flashvars, params,
 attributes);

The first argument is the location of the SWF file.

The second argument is the name of alternate content (the id
of a div tag defined further down in the code) to display if Flash
Player is not available.

The third and fourth arguments specify the height and width
of the application. By default, these are set to 100% in the gen-
erated HTML wrapper so the application takes up the entire
browser window. To change the application’s size—for exam-
ple, to take up a certain amount of space in an existing HTML
page—change these arguments to other absolute or relative
values.

The fifth argument specifies the minimum required version of
Flash Player. Flex 4 applications require Flash Player 10.0.0 or
later.

The sixth argument adds Express Installation, a quick, seam-
less way for users to upgrade their version of Flash Player if it
does not meet the minimum requirements. This argument is
set equal to an empty string (for no Express Installation) or to
the location of the SWF file providing this functionality:
playerProductInstall.swf. Both of these values are set in Java-
Script code before the embed() call.

The last three arguments pass data to the application and set
properties for the application. Use the flashvars object to pass
data to the Flex application from the containing web page. Use
the params and attributes objects to specify how the SWF file
should appear in the browser, including its quality, alignment,
scale, transparency, and more.

Include Your Application on a Web Page | 93

Finally, take a look at the noscript tag, which is executed in
browsers with JavaScript disabled. It contains two object tags
that provide a nonJavaScript way to embed a SWF file:

<noscript>
 <object
 classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
 width="100%" height="100%" id="TestDrive">
 <param name="movie" value="TestDrive.swf" />
 <param name="quality" value="high" />
 <param name="bgcolor" value="#ffffff" />
 <param name="allowScriptAccess" value="sameDomain" />
 <param name="allowFullScreen" value="true" />
 <!--[if !IE]>-->
 <object type="application/x-shockwave-flash"
 data="TestDrive.swf" width="100%" height="100%">
 <param name="quality" value="high" />
 <param name="bgcolor" value="#ffffff" />
 <param name="allowScriptAccess"
 value="sameDomain" />
 <param name="allowFullScreen" value="true" />
 <!--<![endif]-->
 <!--[if gte IE 6]>-->
 <p> Either scripts and active content are not
 permitted to run or Adobe Flash Player
 version 10.0.0 or greater is not installed.
 </p>
 <!--<![endif]-->
 <img
 src="/images/shared/download_buttons/
 get_flash_player.gif"
 alt="Get Adobe Flash Player" />
 <!--[if !IE]>-->
 </object>
 <!--<![endif]-->
 </object>
</noscript>

The object tag with the classid is for use with Internet Ex-
plorer and browsers that implement Flash Player as a Flash
ActiveX control. The second object tag is for use with browsers
that implement Flash Player as a plug-in, such as Firefox, Sa-
fari, or Chrome. Use param tags to set SWF parameters for both.

94 | Chapter 4: Deploy Your Application to a Web Server

If you want to change SWF properties, make sure you set iden-
tical parameter values for the swfobject and both of the
noscript object tags.

If you want to embed your application in an existing web page
and not use the default wrapper, make sure all of this code (or
equivalent functionality) exists in that web page.

Step 3: Look at the bin-release Files
When you deploy your application to a web server, to be on
the safe side, you can just move all the files located in the bin-
release folder (Figure 4-4) to the production server. Take a look
at each of these files now, though, so you can determine if you
actually need them all.

Every Flex application uses at least part of the Flex framework.
To minimize your SWF file size and download times, the
framework code is not compiled into your application. Instead,
it is provided separately as a group of Adobe authenticated
Runtime Shared Libraries (RSLs), which you only have to
download once. Flash Player caches the RSLs and you can use
them with any Flex application. These are all the SWZ files you
see in the project bin folders.

When a user requests an application that uses Adobe RSLs
(which all Flex 4 applications do by default), if Flash Player
already has the appropriate version of the framework files
cached locally, it uses them. Otherwise, Flash Player down-
loads them from the Adobe website and caches them locally.
This means you do not have to deploy these SWZ files to your
web server. You can, though, if you want them on your server
for failover or if you’re deploying an application to an Internet-
restricted environment.

Table 4-1 lists and describes each of the files in the bin folders.

Include Your Application on a Web Page | 95

Figure 4-4. View the files in the bin-release folder

Table 4-1. Files contained in the bin folders

File Description Deploy?

history folder Includes JavaScript, CSS, and
HTML pages that are used for
deep-linking, which lets users
navigate the application

Yes, if your application
uses deep-linking.

96 | Chapter 4: Deploy Your Application to a Web Server

File Description Deploy?
interactions with the browser’s
Forward and Back buttons and
enables the creation of custom
URLs for bookmarking.

datavisualization_x.swz RSL for the data visualization
components, including charts
and advanced grids.

No, provided on Adobe
servers.

framework_x.swz RSL for core Flex framework and
MX components.

No, provided on Adobe
servers.

osmf_flex_x.swz RSL for the open source media
framework used primarily with
the Spark Video Player
component.

No, provided on Adobe
servers.

PlayerProductInstall.swf The SWF file used with
swfobject for Express
Installation—a quick, seamless
way for users to upgrade Flash
Player.

Always, unless you disa-
ble Express Installation.

rpc_x.swz RSL for data services that make
HTTP, web service, or Flash Re-
moting calls.

No, provided on Adobe
servers.

spark_x.swz RSL for Spark components. No, provided on Adobe
servers.

sparkskins_x.swz RSL for skins for MX components. No, provided on Adobe
servers.

swfobject.js SWFObject 2 code for detecting
Flash Player and embedding a
SWF file in a web page.

Always, unless you do not
use swfobject to em-
bed your SWF file in a web
page.

TestDrive.html The HTML page that embeds the
Flex application.

Deploy this file or another
web server page that em-
beds the SWF file and
checks for the minimum
required version of Flash
Player.

TestDrive.swf Your application! Always.

Include Your Application on a Web Page | 97

File Description Deploy?

textLayout_x.swz RSL for the Text Layout Frame-
work used by the Spark text
controls.

No, provided on Adobe
servers.

NOTE
For PHP developers: You will also see an amf_con-
fig.ini file and a gateway.php file in the bin folders. These
files are used when your application makes service calls
(discussed later in the chapter).

Step 4: Change the Project Settings So History Files
Are Not Generated
To prevent history files from being generated in your project,
take the following steps:

1. Select Project→Properties, go to Flex Compiler, uncheck
“Enable integration with browser navigation,” and click
Apply.

2. Click OK in the pop-up window that appears to warn
you that files in the html-template directory will be de-
leted or overwritten.

NOTE
If you’ve customized index.template.html to do
something like pass in flashvars to the applica-
tion, you will need to reenter that information in
the template file.

3. Select Project→Clean.

4. Take a look at the bin-debug folder again. You should no
longer see the history folder.

98 | Chapter 4: Deploy Your Application to a Web Server

When you clean a project, all of the files in the bin-debug folder
are deleted and then built again from scratch.

Deploy Service Code
In this section, you will take a look at where you need to place
your service code—that is, your server-side class files—so your
Flex application can access them. Because this location
depends on the application server you’re using, refer to the
following sections for your server-side technology—PHP,
ColdFusion, or Java.

PHP
When moving a Flex and PHP application to a production
server, you must do the following:

• Ensure the Zend Framework is installed on the server.

• Ensure the gateway.php and amf-config.ini files are in the
same folder as the SWF file.

• Ensure the PHP classes the Flex application calls are lo-
cated in one of the directories specified in the amf-
config.ini file.

• Update the amf-config.ini file to reflect the locations of the
production server’s web root and Zend Framework.

Step 1: In Flash Builder, browse the generated EmployeeService file
This is the services.employeeservice._Super_EmployeeSer-
vice.as file. Locate the source, endpoint, and destination
assignment statements (Figure 4-5).

When you create a data service in Flash Builder, you specify
the location of the PHP class to call. The name of this class is
hardcoded in this generated service file, but its location is not.

Deploy Service Code | 99

Figure 4-5. Locate the code specifying the location of the PHP class

Notice that the endpoint, the file to invoke, is set equal to the
gateway.php file located in the same directory as the SWF file.
Flash Builder will create this file if it does not already exist.
When you deploy your files to a web server, ensure the gate-
way.php file remains in the same folder as the SWF file.

If the PHP class ever changes, you can refresh the data service
in the Data/Services view to update the generated files. If you
rename the PHP class, though, you will need to re-create the
data service.

Step 2: Open the generated Flash Remoting files
In the bin-debug (or bin-release) folder, open gateway.php and
amf-config.ini.

gateway.php is the endpoint for all Flash Remoting requests
from your application. It (along with the Zend Framework)
handles the service request, invoking the correct class method
and handling all data translation and packaging. It references
a configuration file, amf_config.ini, which sets the location of
the web root, the location of the Zend Framework, a produc-
tion flag (to suppress debug messages), and the directories to
look in for classes specified in service calls:

[zend]
;set the absolute location path of webroot directory,
 example:
;Windows: C:\apache\www
;MAC/UNIX: /user/apache/www
webroot =/usr/local/zend/apache2/htdocs/

;set the absolute location path of zend installation
 directory,
example:

100 | Chapter 4: Deploy Your Application to a Web Server

;Windows: C:\apache\PHPFrameworks\ZendFramework\library
;MAC/UNIX:
 /user/apache/PHPFrameworks/ZendFramework/library
;zend_path =

[zendamf]
amf.production = true
amf.directories[]=TestDrive/services

Because the directories that contain classes used in Flash Re-
moting service calls are listed here, when you deploy your Flex
application to a web server, any PHP classes it calls must still
be located in one of the directories specified here. Otherwise,
you need to update this file so it lists the new service file loca-
tion. You should also set amf.production to true to suppress
debug messages.

Of course, you also need to update the amf_config.ini file to
reflect the locations of the web root and the Zend Framework
on the production server.

Step 3: Open the PHP web root folder
Locate the ZendFramework folder. Ensure the Zend Frame-
work is installed on your production server and that the correct
location for it is specified in the amf-config.ini file.

ColdFusion
You can place your Flex application and the ColdFusion com-
ponents (CFCs) it calls anywhere in /ColdFusion/wwwroot/.
They don’t have to be in the same folder and they can be in any
subfolders. The relative path between them does not matter.
The CFCs, however, do need to be located in the same location
as they were on the development server relative to the web root.

If you want to put the CFCs outside the web root, create a
ColdFusion mapping pointing to that location and specify the
use of ColdFusion mappings in the configuration file used for
Flash Remoting requests.

Deploy Service Code | 101

Step 1: Locate the Flash Remoting configuration file
Select Project→Properties and select Flex Compiler. You will
see the following compiler argument:

-services "/Applications/ColdFusion9/wwwroot/WEB-INF/flex
 /services-config.xml"

This compiler argument was added when you created the
project (as a ColdFusion project using Flash Remoting). It
specifies the location of the services-config.xml file that con-
tains the details for how the communication between the ap-
plication and the server should occur and which server-side
classes handle the requests and translation and packaging of
data.

Step 2: Open the services-config.xml file
This file is located in /ColdFusion9/wwwroot/WEB-INF/flex/.
Locate the coldfusion tag in the my-cfamf channel definition.

You will see settings specifying whether ColdFusion uses map-
pings to find CFCs, whether public as well as remote methods
will be accessible, and how to handle the case of property val-
ues when converting between ColdFusion and ActionScript
(since ColdFusion is case-insensitive and ActionScript is
case-sensitive):

<coldfusion>
 <access>
 <use-mappings>true</use-mappings>
 <method-access-level>remote</method-access-level>
 </access>
 <use-accessors>true</use-accessors>
 <use-structs>false</use-structs>
 <property-case>
 <force-cfc-lowercase>true
 </force-cfc-lowercase>
 <force-query-lowercase>true
 </force-query-lowercase>
 <force-struct-lowercase>true
 </force-struct-lowercase>
 </property-case>
</coldfusion>

102 | Chapter 4: Deploy Your Application to a Web Server

Near the top of the file, you will also see the following
include statement for a remoting-config.xml file:

<service-include file-path="remoting-config.xml" />

NOTE
If you are not using ColdFusion 9, your configuration
files will look slightly different. Refer to your ColdFusion
documentation for details.

Step 3: Open the remoting-config.xml file
This file is located in /ColdFusion9/wwwroot/WEB-INF/flex/.
Locate the ColdFusion destination.

This is the default destination Flex applications use for calls to
any ColdFusion component; the wildcard (*) character for the
source means Flex can call a CFC in any location. In this case,
you must specify the location of the CFC in the Flex application
file:

<destination id="ColdFusion">
 <channels>
 <channel ref="my-cfamf"/>
 </channels>
 <properties>
 <source>*</source>
 </properties>
</destination>

NOTE
You can also specify named destinations that are asso-
ciated with a particular CFC endpoint.

Step 4: In Flash Builder, browse the generated EmployeeService file
This is the services.employeeservice._Super_EmployeeSer-
vice.as file. Locate the source and destination assignment
statements (Figure 4-6).

Deploy Service Code | 103

When you create a data service in Flash Builder, you specify
the location of the CFC to call, and this value is hardcoded in
this generated service file. Notice that the destination is set to
ColdFusion, the name of the default destination in the
remoting-config file, and the source is the path to the CFC from
the web root.

If the CFC ever changes, you can refresh the data service from
the Data/Services view to update the generated files. If you
move or rename the CFC, though, you will need to re-create
the data service. This means that when you deploy your Flex
application to a web server, any CFCs it calls must be located
in the same location as they were on the development server
relative to the web root.

Figure 4-6. Locate the code specifying the location of the CFC

Java
When moving a Flex and Java application to a production
server, you must set up BlazeDS for the web application you
are adding your Flex application to. You must also edit the
remoting-config.xml file so it has a destination with the name
you used in your application and points to the correct Java
class.

Step 1: Locate the required BlazeDS files
Open the /testdrive/ folder.

If you are creating a new web application, you can just package
and deploy your development application. Otherwise, you
need to set up BlazeDS for the production web application.
You can get the necessary files from the development web
application or by downloading the BlazeDS WAR file from

104 | Chapter 4: Deploy Your Application to a Web Server

http://opensource.adobe.com/wiki/display/blazeds/Downloads
and getting them from the extracted WAR file.

Open the /testdrive/WEB-INF/lib folder. Copy all the JAR files
to the lib folder of the production web application (Fig-
ure 4-7). Most of these files handle communication between
Flash Player and the server, except flex-rds-server.jar and
derby.jar. The flex-rds-server.jar file is new to BlazeDS 4
(which, at the time of writing, is in beta) and Flash Builder uses
it at development time to create a data service by introspecting
the server-side classes. The derby.jar file is, of course, for the
Apache Derby embedded database that this application uses.

Open the /testdrive/WEB-INF/flex folder. Copy this folder to
the WEB-INF folder of the production web application. It con-
tains all the BlazeDS configuration files.

Open the /testdrive/WEB-INF/web.xml file. Copy this file to the
production WEB-INF folder as well. If the production web ap-
plication already has a web.xml file configured, you can just
copy the servlet mapping for MessageBrokerServlet and listener
for HttpFlexSession using the following code:

<!-- Http Flex Session attribute and binding listener
support -->
 <listener>
 <listener-class>flex.messaging.HttpFlexSession
 </listener-class>
 </listener>
 <!-- MessageBroker Servlet -->
 <servlet>
 <servlet-name>MessageBrokerServlet</servlet-name>
 <display-name>MessageBrokerServlet</display-name>
 <servlet-class>flex.messaging.MessageBrokerServlet
 </servlet-class>
 <init-param>
 <param-name>services.configuration.file
 </param-name>
 <param-value>/WEB-INF/flex/services-config.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>

Deploy Service Code | 105

http://opensource.adobe.com/wiki/display/blazeds/Downloads

 <servlet-name>MessageBrokerServlet</servlet-name>
 <url-pattern>/messagebroker/*</url-pattern>>
</servlet-mapping>

The other servlet mapping you see in the web.xml file is for the
RDSDispatchServlet, which Flash Builder uses to create a data
service by introspecting server-side classes.

Figure 4-7. Locate the required BlazeDS files

106 | Chapter 4: Deploy Your Application to a Web Server

Step 2: Open the services-config.xml and remoting-config.xml files
These files are located in the /testdrive/WEB-INF/flex/ folder.

In the services-config.xml file, you will see the following
include statement for remoting-config.xml:

<service-include file-path="remoting-config.xml" />

In remoting-config.xml, locate the following code, which speci-
fies the employeeService destination:

<destination id="employeeService">
 <properties>
 <source>services.EmployeeService</source>
 <scope>application</scope>
 </properties>
</destination>

The application on the production server that you add your
application to must also have a remoting-config.xml with a
destination with this name and that points to the correct Java
class. The Java class can be located in a different place than it
was on the development server; this destination must reflect
the location on the production server.

Step 3: Locate the Flex application’s reference to the services-
config.xml file
In Flash Builder, select Project→Properties and select Flex
Compiler. You will see a compiler argument that looks like the
following:

-services "/Applications/tomcat/webapps/testdrive/WEB-INF/
 flex/services-config.xml"

This compiler argument was added when you created the
project (as a J2EE project using BlazeDS).

Step 4: In Flash Builder, browse the generated EmployeeService file
This is the services.employeeservice._Super_EmployeeSer-
vice.as file. Locate the destination assignment statement (Fig-
ure 4-8).

Deploy Service Code | 107

When you create a data service in Flash Builder, you select a
service from a list of destinations already defined in the
remoting-config.xml file.

If the class ever changes, you can refresh the data service from
the Data/Services view to update the generated files. If you
move the class, make sure the destination in the remoting-
config.xml file is updated to reflect the new location. If you
rename the class during development, though, you will need
to re-create the data service.

Congratulations! You’ve learned the basics for deploying a Flex
application: creating a release version, including the applica-
tion on a web page, and ensuring your application can access
your server-side service files.

Figure 4-8. Locate the code specifying the destination for the Java class

108 | Chapter 4: Deploy Your Application to a Web Server

CHAPTER 5

Change the Appearance of
Your Application

In the previous chapters, you learned to create, debug, and de-
ploy a Flex application. In this chapter, you will learn how to
change the appearance of your application using styling and
skinning; you will learn to create a stylesheet and define style
rules that you apply to your application.

Use Styling
With styling, you set component styles inline in MXML (as you
already have) or preferably, in a stylesheet using selectors (style
rules). Each component has a limited number of defined styles.
For example, you can set styles for a label, including font-
size, font-family, and color. For a button, you can also set a
corner-radius style. If you want to change the appearance of
a component more drastically than is possible with a
component’s styles, you need to create or edit the associated
component skin—the file specifying what the component
should look like.

The Flex framework includes two families of components:
Spark and MX. The tags that start with s (for example,
<s:Button>) are new Flex 4 Spark components. The tags that

109

start with mx (for example, <mx:DataGrid>) are the older Flex
components. You set the appearance of MX components pri-
marily using styling. The new Spark components have been
rearchitected to primarily use a skinning (rather than styling)
model in which each component’s associated skin file manages
everything related to a component’s appearance, including its
graphics, its layout, and its states.

Step 1: Create a Stylesheet and a CSS Global Selector
In Design mode with any object selected, navigate to the Ap-
pearance view and change font and color styles (Figure 5-1).

If you don’t want to choose your own values, here are some
you can use: font-family: Verdana, font-size: 10, chrome-
color: #7F7364, selection-color: #BFB59F, rollover-color:
#E5DFC3, focus-color: #7F7364.

The components in the design area will reflect these new styles.
Even though the global font size is set to 10 pixels, the XYZ
Label is still large because it has a font-size style set inline in
its MXML tag.

Switch to Source mode. You will see the following new Style
tag below the Application tag:

<fx:Style source="TestDrive.css"/>

In the Package Explorer, you will see a new file, Test-
Drive.css. Open this file. You will see the following global CSS
selector, whose styles will be applied to all components:

/* CSS file */
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";
global
{
 font-family: Verdana;
 font-size: 10;
 chrome-color: #7F7364;
 selection-color: #BFB59F;
 roll-over-color: #E5DFC3;
 focus-color: #7F7364;
}

110 | Chapter 5: Change the Appearance of Your Application

Run the application to see the different colors for component
chrome, rollover, selection, and focus (Figure 5-2).

Step 2: Create a CSS Type Selector
In Design mode, select one of the buttons and change its radius
to 5 in the Properties view. Click the Convert to CSS button.
In the New Style Rule dialog box (Figure 5-3), select “Specific
component.”

A CSS type selector is created with styles that will automatically
be applied to all component instances of this type—in this case,
all buttons.

Figure 5-1. Set global styles in the Appearance view

Use Styling | 111

Return to TestDrive.css. You will see the following new CSS
type selector:

s|Button
{
 cornerRadius: 5;
}

The s in front of Button specifies that this is the style for Spark
buttons, not MX buttons. Return to TestDrive.mxml in Design
mode or run the application. All the buttons now have rounded
corners.

Figure 5-2. View the different component colors

Figure 5-3. Create a CSS type selector

112 | Chapter 5: Change the Appearance of Your Application

Step 3: Modify a CSS Selector
In TestDrive.css, add the color white (#FFFFFF) and the font
weight bold to the button selector.

When typing styles, press Ctrl-space bar to force Content As-
sist to pop up so you can select styles from this list (Figure 5-4).

Figure 5-4. Use Content Assist when editing stylesheets

Return to TestDrive.mxml in Design mode or run the applica-
tion. All the buttons now have bold white text, but it is difficult
to read a disabled button (Figure 5-5).

Figure 5-5. Buttons as displayed in Design mode

Use Styling | 113

Step 4: Create a CSS Pseudoselector
In TestDrive.css, add the following code to create a pseudose-
lector for the button’s disabled state and set its color to black,
#000000:

s|Button:disabled
{
 color:#000000;
}

Look at a component’s API to find its defined skin states (Fig-
ure 5-6). Remember, you can open a component’s API by se-
lecting Help→Dynamic Help, clicking a tag in MXML, then
clicking the API link in the Help view.

Figure 5-6. Locate the states of a Button component in its API

Return to TestDrive.mxml in Design mode or run the applica-
tion. You will now be able to read a disabled button (Fig-
ure 5-7).

Figure 5-7. Disabled buttons are now readable

114 | Chapter 5: Change the Appearance of Your Application

Step 5: Create a CSS Class Selector
In Design mode, select the Departments button and change its
font size to 12 in the Properties view. Click the Convert to
CSS button. In the New Style Rule dialog box (Figure 5-8),
select “All components with style name” and name the style
navButton.

Figure 5-8. Create a CSS class selector called navButton

Return to TestDrive.css. You will see the following new CSS
class selector, which you can selectively apply to any
component:

.navButton
{
 fontSize: 12;
}

Return to Source mode in TestDrive.mxml and locate the
deptBtn button. It now has a styleName property (for one state)
set equal to the name of the class selector you just defined:

<s:Button x="124" y="85" label="Departments" id="deptBtn"
 enabled.Departments="false"
 click="deptBtn_clickHandler(event)"
 styleName.Employees="navButton"/>

Use Styling | 115

Use the following to apply this property to all states:

styleName="navButton"

Step 6: Assign a CSS Class Selector to Another
Component
In Design mode, select the Employees button and select the
navButton style in the Properties view (Figure 5-9). Move the
buttons so they are not overlapping. Switch to Source mode
and change the button so the new x, y, and styleName values
are used in all states.

Any styles that you can apply to that component will appear
in the drop-down list.

Figure 5-9. Assign a CSS class selector to a component

The Button tags should appear as follows:

<s:Button x="36" y="85" label="Employees" id="empBtn"
 enabled="false"
 styleName="navButton" enabled.Departments="true"/>
<s:Button label="Departments" id="deptBtn"
 click="deptBtn_clickHandler(event)"
 styleName="navButton" x="138" y="85"
 enabled.Departments="false"/>

Both of the buttons now have larger text than the other
buttons—you selectively applied the navButton style to these
two buttons.

116 | Chapter 5: Change the Appearance of Your Application

Step 7: Style the DataGrid
In TestDrive.css, add a type selector for the mx|DataGrid and set
its alternating-item-colors to #F8F8F4, #FFFFFF and its
header-style-name to titles. Create a class selector called
titles with a color of white and a font-weight of bold.

Your selectors should appear as follows:

mx|DataGrid
{
 alternating-item-colors:#F8F8F4,#FFFFFF;
 header-style-name:titles;
}
.titles{
 color:#FFFFFF;
 font-weight:bold;
}

Return to TestDrive.mxml in Design mode or run the applica-
tion. The DataGrid header text and rows should now be styled
as shown in Figure 5-10.

Figure 5-10. The new DataGrid styles

Step 8: Create a CSS ID Selector
In Source mode, give the XYZ Label an ID of xyz and remove
its color, fontWeight, and fontSize styles. In TestDrive.css,
create an ID selector for the Label using #xyz and set the

Use Styling | 117

color to #403029, the font-weight to bold, and the font-size to
20.

Your label should appear as follows:

<s:Label id="xyz" x="36" y="36"
 text="XYZ Corporation Directory"/>

Your CSS ID selector should appear as follows:

#xyz
{
 color: #403029;
 fontSize: 20;
 fontWeight: bold;
}

Return to TestDrive.mxml in Design mode or run the applica-
tion and make sure the XYZ label is large, brown, and bold.

Step 9: Set the Application Background Color
In the Application tag, set the backgroundColor style to a new
color (#F9F8E9). Run the application—it should appear styled
as shown in Figure 5-11.

In this section, you learned to create a stylesheet and define
CSS global, type, class, pseudo, and ID selectors that you ap-
plied to your application. In addition to these selectors, you
can also create component-specific class selectors and de-
scendant selectors.

When you complete the styled application steps, your code
should look like the following (you can download the complete
sample application at www.adobe.com/devnet/flex/testdrive/as
sets/testdrive_style_skin.zip):

TestDrive.mxml

<?xml version="1.0" encoding="utf-8"?>
 <s:Application ... backgroundColor="#F9F8E9">
 <fx:Style source="TestDrive.css"/>
 (...)
 </s:Application>

118 | Chapter 5: Change the Appearance of Your Application

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip

TestDrive.css

/* CSS file */
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";

global
{
 font-family: Verdana;
 font-size: 10;
 chrome-color: #7F7364;
 selection-color: #BFB59F;
 roll-over-color: #E5DFC3;
 focus-color: #7F7364;
}
s|Button
{
 cornerRadius: 5;
 color:#FFFFFF;
 font-weight:bold;
}
s|Button:disabled{

 color:#000000;
}
.navButton
{
 fontSize: 12;
}
mx|DataGrid
{
 alternating-item-colors:#F8F8F4,#FFFFFF;
 header-style-name:titles;
}
.titles{
 color:#FFFFFF;
 font-weight:bold;
}
#xyz
{
 color: #403029;
 fontSize: 20;
 fontWeight: bold;
}

Use Styling | 119

Figure 5-11. The completed styled application

Add Components to Skins
In this section, you will create a button that has both text and
an icon on it. To accomplish this, you will create a new button
skin based on the default button skin and then modify its layout
and add a new BitmapImage component to it.

Step 1: Create a New Button Skin File
In Design mode, select the Chart data button in the Depart-
ments state and, in the Properties view, click the button next
to the Skin field and select Create Skin (Figure 5-12). In the
New MXML Skin dialog box, name it ChartButtonSkin and
leave the defaults selected (Figure 5-13).

120 | Chapter 5: Change the Appearance of Your Application

Figure 5-12. Create a new skin for the Chart data button

Figure 5-13. Create a new ChartButtonSkin as a copy of the default
ButtonSkin

Add Components to Skins | 121

In TestDrive.mxml, switch to Source mode and look at the
Chart data button. It now has a skinClass style set to the name
of the new skin ChartButtonSkin, which right now is the same
as the default skin (you can also set this style in the stylesheet):

<s:Button includeIn="Departments" x="609" y="293"
 label="Chart data" skinClass="ChartButtonSkin"/>

Step 2: Review the Skin Class
In ChartButtonSkin.mxml, switch to Source mode and review
the code (Figure 5-14). The host component specifies which
component this skin can be applied to:

[HostComponent("spark.components.Button")]

Next, there are several functions that adjust the graphics based
on any style values you set, followed by the states. These match
those for the button, the host component.

Below this are graphics tags, including multiple Rect and
LinearGradient tags, which draw rectangles and gradients—
the graphics for all the buttons in the application.

Figure 5-14. Review the graphics code

122 | Chapter 5: Change the Appearance of Your Application

Finally, at the end you will see a Label control. This is the
component whose text property is set when you set a button’s
label property. It is called a skin part. The various attributes
specify where the label should appear on the button:

<s:Label id="labelDisplay"
 textAlign="center"
 verticalAlign="middle"
 maxDisplayedLines="1"
 horizontalCenter="0" verticalCenter="1"
 left="10" right="10" top="2" bottom="2">
 </s:Label>

Step 3: Place the Label Inside a Group Container with
HorizontalLayout
Set the layout property of the Group component to an instance
of the HorizontalLayout class. Move the label inside the group
and transfer the layout properties from the Label control to
either the group or HorizontalLayout as appropriate.

Here, you are creating a group with a HorizontalLayout to have
a label and an icon next to each other (horizontally) on the
button.

Your code should appear as follows:

<s:Group horizontalCenter="0" verticalCenter="1"
left="10" right="10" top="2" bottom="2" >
 <s:layout>
 <s:HorizontalLayout verticalAlign="middle"/>
 </s:layout>
 <s:Label id="labelDisplay" textAlign="center"
 maxDisplayedLines="1"/>
</s:Group>

Run the application or switch to Design mode for Test-
Drive.mxml. The Chart data button should look exactly the
same as it did before; you haven’t changed it yet.

Add Components to Skins | 123

Step 4: Add a BitmapImage Component
Inside the group, add a BitmapImage component and set its
source property to an embedded image (pieIcon.gif) in your
project folder.

You can use your own image or the one supplied with the Test
Drive files. To use your own image, simply copy it into your
project src folder and then reference it. To use the Test Drive
icon, copy the pieIcon.gif file located in the sample files for this
module at www.adobe.com/devnet/flex/testdrive/assets/test
drive_style_skin.zip and paste it into your project src folder.

Your code should appear as follows:

<s:Group horizontalCenter="0" verticalCenter="1" left="10"
 right="10" top="2" bottom="2" >
 <s:layout>
 <s:HorizontalLayout verticalAlign="middle"/>
 </s:layout>
 <s:Label id="labelDisplay" textAlign="center"
 maxDisplayedLines="1"/>
 <s:BitmapImage source="@Embed('pieIcon.gif')"/>
</s:Group>

Save the file. Switch to Design mode for TestDrive.mxml. You
will see the icon on your button (Figure 5-15). Move the but-
tons so they are not overlapping.

Figure 5-15. The new icon on the Chart data button

In this section, you learned to change the appearance of a com-
ponent by extending a default component skin and adding
additional components to it. Your code should look like the

124 | Chapter 5: Change the Appearance of Your Application

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip

following (you can download the complete sample
application at www.adobe.com/devnet/flex/testdrive/assets/test
drive_style_skin.zip):

TestDrive.mxml

<?xml version="1.0" encoding="utf-8"?>
 <s:Application ... >
 (...)
 <s:Button label="Chart data"
 skinClass="ChartButtonSkin" .../>
 (...)
 </s:Application>

ChartButtonSkin.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:SparkSkin xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:fb="http://ns.adobe.com/flashbuilder/2009"
 minWidth="21" minHeight="21" alpha.disabled="0.5">
 <fx:Metadata>
 <![CDATA[
 [HostComponent("spark.components.Button")]
]]>
 </fx:Metadata>

 <fx:Script fb:purpose="styling">
 <![CDATA[
 static private const
 exclusions:Array = ["labelDisplay"];
 override public function get
 colorizeExclusions():Array
 {return exclusions;}
 override protected function
 initializationComplete():void { (...) }
 override protected function
 updateDisplayList(unscaledWidth:Number,
 unscaledHeight:Number) : void
 { (...) }
 private var cornerRadius:Number = 2;
]]>
 </fx:Script>
 <s:states>
 <s:State name="up" />
 <s:State name="over" />
 <s:State name="down" />

Add Components to Skins | 125

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip

 <s:State name="disabled" />
 </s:states>
 <!-- layer 1: shadow -->
 <s:Rect id="shadow" left="-1" right="-1" top="-1"
 bottom="-1" radiusX="2">
 <s:fill>
 <s:LinearGradient rotation="90">
 <s:GradientEntry color="0x000000"
 color.down="0xFFFFFF"
 alpha="0.01"
 alpha.down="0" />
 <s:GradientEntry color="0x000000"
 color.down="0xFFFFFF"
 alpha="0.07"
 alpha.down="0.5" />
 </s:LinearGradient>
 </s:fill>
 </s:Rect>
 <!-- layer 2: fill -->
 <s:Rect id="fill" ... />
 <!-- layer 3: fill lowlight -->
 <s:Rect id="lowlight".../>
 <!-- layer 4: fill highlight -->
 <s:Rect id="highlight" .../>
 <!-- layer 5: highlight stroke (all states except
 down) -->
 <s:Rect id="highlightStroke" .../>
 <!-- layer 6: highlight stroke (down state only) -->
 <s:Rect id="hldownstroke1" .../>
 <!-- layer 7: border - put on top of the fill so
 it doesn't disappear when scale is less than 1 -->
 <s:Rect id="border" .../>

 <!-- layer 8: text -->
 <s:Group horizontalCenter="0" verticalCenter="1"
 left="10" right="10" top="2" bottom="2" >
 <s:layout>
 <s:HorizontalLayout verticalAlign="middle"/>
 </s:layout>
 <s:Label id="labelDisplay" textAlign="center"
 maxDisplayedLines="1"/>
 <s:BitmapImage source="@Embed('pieIcon.gif')"/>
 </s:Group>
 </s:SparkSkin>

126 | Chapter 5: Change the Appearance of Your Application

Create Skins with New Graphics
In this section, you will create a component skin that has en-
tirely new graphics and does not use the graphics code from a
parent skin.

Step 1: Create a New Button Skin File
In Design mode, select the Bigger Text button in the Depart-
ments state and, in the Properties view, click the button next
to the Skin field and select Create Skin. In the New MXML Skin
dialog box, name it BiggerButtonSkin and uncheck “Create as
copy of” (Figure 5-16).

Figure 5-16. Create a new BiggerButtonSkin as a new MXML skin

Create Skins with New Graphics | 127

Step 2: Review the Skin Class
In BiggerButtonSkin.mxml, switch to Source mode and review
the code. Because you specified the Host component to be a
button, the HostComponent and states are already set:

<s:Skin xmlns:fx=http://ns.adobe.com/mxml/2009...>
 <!-- host component -->
 <fx:Metadata>
 [HostComponent("spark.components.Button")]
 </fx:Metadata>
 <!-- states -->
 <s:states>
 <s:State name="disabled" />
 <s:State name="down" />
 <s:State name="over" />
 <s:State name="up" />
 </s:states>
</s:Skin>

Step 3: Review the Graphics Code
Copy the BiggerButton.fxg file located in the sample files for
this module (www.adobe.com/devnet/flex/testdrive/assets/test
drive_style_skin.zip). Paste BiggerButton.fxg into your project
src folder. Open the file.

This file was drawn in Fireworks and then exported by select-
ing Commands→Export to FXG. You can also create FXG files
using Illustrator or Photoshop.

In the FXG file, you will see code for creating graphics
(Figure 5-17). You can copy and paste this code into your
BiggerButtonSkin class or just reference it as we will do next.

Step 4: Add the Graphics to the Skin
After the states in BiggerButtonSkin.mxml, use Code Assist to
add an instance of the BiggerButton FXG class (Figure 5-18).

Because you used Code Assist, the namespace assignment
(xmlns:local="*") was written for you.

128 | Chapter 5: Change the Appearance of Your Application

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip

This tells the compiler where to find this class. Put the FXG file
in the same folder as the MXML file (the default package), so
* specifies to look for files in the same folder.

Your skin class should appear as follows:

<?xml version="1.0" encoding="utf-8"?>
<s:Skin xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 xmlns:local="*">
 <fx:Metadata>
 [HostComponent("spark.components.Button")]
 </fx:Metadata>
 <s:states>
 <s:State name="disabled" />
 <s:State name="down" />
 <s:State name="over" />
 <s:State name="up" />
 </s:states>

Figure 5-17. Review the graphics code in BiggerButton.fxg

Figure 5-18. Add the BiggerButton FXG class

Create Skins with New Graphics | 129

 <local:BiggerButton/>
</s:Skin>

Save the file and return to TestDrive.mxml in Design mode.
You will see the Bigger button with the new skin, as shown in
Figure 5-19. Move it next to the Chart data button.

Figure 5-19. The new graphics for the Bigger button

Run the application. Click the Departments button and then
the Bigger button. The DataGrid text will get larger (Fig-
ure 5-20); the button works exactly as before—it just has a new
look.

Figure 5-20. When you click the Bigger button, DataGrid text appears
larger

Congratulations! In this chapter, you learned to change the
appearance of your application using styling and skinning.

130 | Chapter 5: Change the Appearance of Your Application

Your code should look like the following (download the com-
plete sample application at www.adobe.com/devnet/flex/test
drive/assets/testdrive_style_skin.zip):

TestDrive.mxml

<?xml version="1.0" encoding="utf-8"?>
 <s:Application ... >
 (...)
 <s:Button id="biggerBtn"
 skinClass="BiggerButtonSkin" .../>
 (...)
 </s:Application>

BiggerButtonSkin.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Skin xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 xmlns:local="*">
 <fx:Metadata>
 [HostComponent("spark.components.Button")]
 </fx:Metadata>

 <s:states>
 <s:State name="disabled" />
 <s:State name="down" />
 <s:State name="over" />
 <s:State name="up" />
 </s:states>
 <local:BiggerButton/>
</s:Skin>

BiggerButton.fxg

<?xml version="1.0" encoding="UTF-8"?>
<Graphic version="1.0"
 xmlns="http://ns.adobe.com/fxg/2008"
 xmlns:fw="http://ns.adobe.com/fxg/2008/fireworks"
 viewHeight= "25" viewWidth= "25">
 <Library></Library>
 <Group id="Page_1" fw:type="page">
 <Group id="State_1" fw:type="state">
 <Group id="Layer_1" fw:type="layer">
 <Path winding="evenOdd" blendMode="normal"
 alpha="1">
 data="M 2 13 C 2 7 7 2 13 2 C 18 2 23 7 23 13

Create Skins with New Graphics | 131

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_style_skin.zip

 C 23 18 18 23 13 23 C 7 23 2 18 2 13 Z "
 <fill>
 <SolidColor color="#bfb59f" alpha="1"/>
 </fill>
 <stroke>
 <SolidColorStroke color="#403029" weight="3"/>
 </stroke>
 </Path>
 <Path winding="evenOdd" data="M 13 6 L 13 18"
 blendMode="normal" alpha="1">
 <stroke>
 <SolidColorStroke color="#403029" weight="2"/>
 </stroke>
 </Path>
 <Path winding="evenOdd" data="M 7 12 L 19 12"
 blendMode="normal" alpha="1">
 <stroke>
 <SolidColorStroke color="#403029" weight="2"/>
 </stroke>
 </Path>
 </Group>
 </Group>
 </Group>
</Graphic>

132 | Chapter 5: Change the Appearance of Your Application

CHAPTER 6

Add Charts and Graphs

In the previous chapter, you learned to build, debug, deploy,
style, and skin a Flex application. In this chapter, you will add
and format charts.

Add a Pie Chart
The following steps describe how to create and configure the
data for a pie chart.

Step 1: Create a New State DepartmentChart with a
Pie Chart
Disable the Chart data button and add a PieChart called
deptPieCht from the Components view (Figure 6-1). Arrange
the chart as shown in Figure 6-2.

Step 2: Specify the Data for the Chart
In Source mode, set the PieChart dataProvider to that for the
DataGrid, deptDg.dataProvider. Set the PieSeries field to
budget and its nameField to name. Remove the displayName
property.

133

The field is the property of the objects in the dataProvider to
chart. The nameField is the property of the objects in the
dataProvider to display in the legend.

Your code should appear as follows:

<mx:PieChart includeIn="DepartmentChart" x="35" y="308"
 id="deptPieCht"
 width="282" height="282"
 dataProvider="{deptDg.dataProvider}">
 <mx:series>
 <mx:PieSeries field="budget" nameField="name"/>
 </mx:series>
</mx:PieChart>
<mx:Legend includeIn="DepartmentChart"
 dataProvider="{deptPieCht}"
 x="323" y="308"/>

Figure 6-1. Add a PieChart component

134 | Chapter 6: Add Charts and Graphs

Step 3: Configure Your Application Such That States
Are Switched When the Chart Data Button Is Clicked
Assign the Chart data button an id of chartBtn and generate a
click handler for it. Make it the click handler for all states.
Inside the handler, set the currentState to DepartmentChart.

Delete the state associated with the click event in either Source
mode or Design mode, right-click the button, and select Apply
Current Properties to All States. Your code for the button
should appear as follows:

<s:Button id="chartBtn"
includeIn="DepartmentChart,DepartmentDetails,Departments"
x="591" y="293" label="Chart data"
skinClass="ChartButtonSkin" enabled.DepartmentChart="false"
enabled.DepartmentDetails="false"
click="chartBtn_clickHandler(event)" />

Figure 6-2. Arrange the DepartmentChart state as shown here

Add a Pie Chart | 135

The handler should appear as follows:

protected function
 chartBtn_clickHandler(event:MouseEvent):void
{
 currentState="DepartmentChart";
}

Run the application and click the Chart data button. The pie
chart displays the budget data (Figure 6-3). When you mouse
over the chart, nothing happens.

Figure 6-3. Display the department budget data in a pie chart

Step 4: Display Chart Labels and Data Tips
Set the PieChart showDataTips property to true. Set the
PieSeries labelField property to name and the labelPosition
style to inside.

136 | Chapter 6: Add Charts and Graphs

The labelField is the property of the objects in the
dataProvider to display on the PieChart. You have to set the
labelPosition to inside, outside, callout, or insideWithCall
out to specify where the labels should appear; the default value
is none.

Your code should appear as follows:

<mx:PieChart includeIn="DepartmentChart" x="35" y="308"
 id="deptPieCht"
 width="282" height="282"
 dataProvider="{deptDg.dataProvider}"
 showDataTips="true">
 <mx:series>
 <mx:PieSeries field="budget" nameField="name"
 labelField="name"
 labelPosition="inside"/>
 </mx:series>
</mx:PieChart>

Run the application. You will see labels on the chart, and when
you mouse over a slice you will see a data tip, as shown in
Figure 6-4.

Figure 6-4. Add labels and data tips to the pie chart

Add a Pie Chart | 137

Step 5: Delete the Legend
You no longer need the legend, because you have added labels.
To delete the legend, delete the Legend component in Design
mode or delete the Legend tag in Source mode.

Your final code should look like the following (you can down-
load the complete sample application at www.adobe.com/dev
net/flex/testdrive/assets/testdrive_add_charts.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 protected function
 chartBtn_clickHandler(event:MouseEvent):void
 {
 currentState="DepartmentChart";
 }
]]>
 </fx:Script>
 <s:states>
 (...)
 <s:State name="DepartmentChart"/>
 </s:states>
 (...)
 <s:Buttonid="empBtn"
 click.DepartmentChart=
 "empBtn_clickHandler(event)" .../>
 <s:Button id="deptBtn"
 enabled.DepartmentChart="false" .../>
 <mx:DataGrid id="deptDg"
 includeIn="DepartmentChart,Departments" .../>
 <s:Button id="chartBtn"
 includeIn="DepartmentChart,Departments"
 enabled.DepartmentChart="false"
 click="chartBtn_clickHandler(event)".../>
 <s:Button id="biggerBtn"
 includeIn="DepartmentChart,Departments" .../>
 <mx:PieChart includeIn="DepartmentChart" x="35"
 y="308" id="deptPieCht" width="282" height="282"
 dataProvider="{deptDg.dataProvider}"
 showDataTips="true">
 <mx:series>
 <mx:PieSeries field="budget" nameField="name"

138 | Chapter 6: Add Charts and Graphs

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_add_charts.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_add_charts.zip

 labelField="name"
 labelPosition="inside"/>
 </mx:series>
 </mx:PieChart>
 <!--<mx:Legend includeIn="DepartmentChart"
 dataProvider="{deptPieCht}"
 x="323" y="308"/>-->
</s:Application>

Add a Column Chart
In this section, you will display data in a column chart. The
column chart will be displayed when the user clicks a pie chart
item, and it will show detailed data for the selected item.

Step 1: Create a New State, DepartmentDetails, with
a Column Chart
Add a ColumnChart from the Components view called
deptColCht. Arrange the chart as shown in Figure 6-5.

Step 2: Configure Your Application Such That States
Are Switched When a Department Slice Is Clicked on
the Pie Chart
Add an itemClick handler to the PieChart, and inside the han-
dler set the currentState to DepartmentDetails.

Your opening PieChart tag should appear as follows:

<mx:PieChart includeIn="DepartmentChart,DepartmentDetails"
 x="35" y="308" id="deptPieCht" width="282" height="282"
 dataProvider="{deptDg.dataProvider}" showDataTips="true"
 itemClick="deptPieCht_itemClickHandler(event)">

The handler code should appear as follows:

protected function
 deptPieCht_itemClickHandler(event:ChartItemEvent):void
{

Add a Column Chart | 139

 currentState="DepartmentDetails";
}

If you did not generate the event handler automatically, be sure
to select ChartItemEvent from Code Assist so the following
import statement is written for you:

import mx.charts.events.ChartItemEvent;

Run the application and click an item in the pie chart. You will
see a column chart with no data displayed.

Figure 6-5. Arrange the DepartmentDetails state as shown here

Step 3: Create the ColumnChart dataProvider
Inside the PieChart itemClick handler, set the ColumnChart
dataProvider equal to the array of objects returned by the func-
tion below.

140 | Chapter 6: Add Charts and Graphs

Copy and paste the following createDataProvider() function
into your Script block. It creates an array of objects with prop-
erties called field, actual, and est for each of the items in a
department’s budget and expense data:

private function createDataProvider(item:Object):Array
{
 var dp:Array=
 [{field:'salaries',actual:item.actualsalary,
 est:item.estsalary},
 {field:'travel',actual:item.actualtravel,
 est:item.esttravel},
 {field:'supplies',actual:item.actualtravel,
 est:item.esttravel},
 {field:'contractors',actual:item.actualcontractors,
 est:item.estcontractors}];
 return dp;
}

Call this function inside the PieChart itemClick handler and
pass it the selected item in the PieChart, which you get from
the event object, event.hitData.item. Set the ColumnChart
dataProvider equal to the array of objects returned by this
function. Your code should appear as follows:

protected function
 deptPieCht_itemClickHandler(event:ChartItemEvent):void
{
 currentState="DepartmentDetails";
 deptColCht.dataProvider=
 createDataProvider(event.hitData.item);
}

Step 4: Specify the Data to Chart
Set the ColumnSeries yField to est and its displayName to
Estimated.

The ColumnChart code should appear as follows:

<mx:ColumnChart includeIn="DepartmentDetails" x="325"
 y="308" id="deptColCht" height="278" width="363">
 <mx:series>
 <mx:ColumnSeries displayName="Estimated"
 yField="est"/>
 </mx:series>

Add a Column Chart | 141

</mx:ColumnChart>
<mx:Legend includeIn="DepartmentDetails"
 dataProvider="{deptColCht}" x="596" y="325"/>

Run the application. When you click an item in the pie chart,
you will see details for that department in the column chart
(Figure 6-6).

Figure 6-6. Show department expense data in a column chart

Step 5: Specify Axis Types and Titles
Set the ColumnChart horizontalAxis property to an instance
of the CategoryAxis class with a categoryField of field and a
title of Expenses. Set the ColumnChart verticalAxis property
to an instance of the LinearAxis class with a minimum of 0, a
maximum of 500000, and a title of Amount.

The ColumnChart code should appear as follows:

<mx:ColumnChart includeIn="DepartmentDetails" x="325"
 y="308" id="deptColCht" height="278" width="363">
 <mx:horizontalAxis>
 <mx:CategoryAxis title="Expenses"
 categoryField="field"/>
 </mx:horizontalAxis>
 <mx:verticalAxis>
 <mx:LinearAxis title="Amount" minimum="0"
 maximum="500000"/>
 </mx:verticalAxis>
 <mx:series>

142 | Chapter 6: Add Charts and Graphs

 <mx:ColumnSeries displayName="Estimated"
 yField="est"/>
 </mx:series>
</mx:ColumnChart>

Run the application. You will see the names of the fields dis-
played on the horizontal axis and titles for both axes, as shown
in Figure 6-7.

Figure 6-7. Specify axis types and titles

Step 6: Add a Second Series and Show Data Tips
Add a second ColumnSeries tag to the ColumnChart series
property and set its yField to actual and its displayName to
Actual. Set the ColumnChart showDataTips property to true.

The code should appear as follows:

<mx:ColumnChart includeIn="DepartmentDetails" x="325"
 y="308" id="deptColCht" height="278" width="363"
 showDataTips="true">
 <mx:horizontalAxis>

Add a Column Chart | 143

 <mx:CategoryAxis title="Expenses"
 categoryField="field"/>
 </mx:horizontalAxis>
 <mx:verticalAxis>
 <mx:LinearAxis title="Amount" minimum="0"
 maximum="1000000"/>
 </mx:verticalAxis>
 <mx:series>
 <mx:ColumnSeries displayName="Estimated"
 yField="est"/>
 <mx:ColumnSeries displayName="Actual"
 yField="actual"/>
 </mx:series>
</mx:ColumnChart>

Run the application. You will see two sets of data, a legend,
and data tips when you mouse over the columns (Figure 6-8).

Figure 6-8. Add a second data series and data tips

144 | Chapter 6: Add Charts and Graphs

Step 7: Display the Selected Department Name in the
Axis Title
Assign the CategoryAxis an id of expenseAxis and inside the
PieChart itemClick handler, set the title of this axis to the
name of the selected item plus the string, Expenses.

The CategoryAxis code should appear as follows:

<mx:CategoryAxis id="expenseAxis" title="Expenses"
 categoryField="field"/>

The handler code should appear as follows:

protected function
 deptPieCht_itemClickHandler(event:ChartItemEvent):void
{
 currentState="DepartmentDetails";
 deptColCht.dataProvider=
 createDataProvider(event.hitData.item);
 expenseAxis.title=event.hitData.item.name+" Expenses";
}

Run the application and select different items in the pie chart.
You will see the horizontal axis title change (Figure 6-9).

Figure 6-9. Display the selected department name in the axis title

Add a Column Chart | 145

Step 8: Animate the Data Change
In the Declarations block, create an instance of the SeriesIn
terpolate class called interpolate and set its duration property
to 1000. To both of the ColumnSeries objects, add a new
attribute called showDataEffect and set it equal to the
interpolate object.

The duration property is set to a length of time in milliseconds.
Your new declaration code should appear as follows:

<fx:Declarations>
 (...)
 <mx:SeriesInterpolate id="interpolate" duration="1000"/>
</fx:Declarations>

The ColumnSeries objects should appear as follows:

<mx:ColumnSeries displayName="Estimated" yField="est"
 showDataEffect="{interpolate}"/>
<mx:ColumnSeries displayName="Actual" yField="actual"
 showDataEffect="{interpolate}"/>

Run the application and click different department slices in the
pie chart. Instead of instantly changing size, the columns now
grow larger or smaller as the underlying data changes.

After adding a column chart, your code should look like the
following (you can download the sample application at
www.adobe.com/devnet/flex/testdrive/assets/test
drive_add_charts.zip):

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Script>
 <![CDATA[
 (...)
 import mx.charts.events.ChartItemEvent;

 protected function
 deptPieCht_itemClickHandler(
 event:ChartItemEvent):void
 {
 currentState="DepartmentDetails";
 deptColCht.dataProvider=
 createDataProvider(event.hitData.item);

146 | Chapter 6: Add Charts and Graphs

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_add_charts.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_add_charts.zip

 expenseAxis.title=event.hitData.item.name+
 " Expenses";
 }
 private function
 createDataProvider(item:Object):Array{
 var dp:Array= [{field:'salaries',
 actual:item.actualsalary,est:item.estsalary},
 {field:'travel',actual:item.actualtravel,
 est:item.esttravel},
 {field:'supplies',actual:item.actualtravel,
 est:item.esttravel},
 {field:'contractors',
 actual:item.actualcontractors,
 est:item.estcontractors}];
 return dp;
 }
]]>
 </fx:Script>
 <s:states>
 (...)
 <s:State name="DepartmentDetails"/>
 </s:states>
 <fx:Declarations>
 (...)
 <mx:SeriesInterpolate id="interpolate"
 duration="1000"/>
 </fx:Declarations>
 (...)
 <s:Button id="empBtn"
 click.DepartmentDetails=
 "empBtn_clickHandler(event)" .../>
 <s:Button id="deptBtn"
 enabled.DepartmentDetails="false" .../>
 <mx:DataGrid id="deptDg"
 includeIn="DepartmentChart,DepartmentDetails,
 Departments" .../>
 <s:Button id="chartBtn"
 includeIn="DepartmentChart,DepartmentDetails,
 Departments"
 enabled.DepartmentDetails="false" .../>
 <s:Button id="biggerBtn"
 includeIn="DepartmentChart,DepartmentDetails,
 Departments" .../>
 <mx:PieChart
 includeIn="DepartmentChart,DepartmentDetails"
 x="35" y="308" id="deptPieCht" width="282"
 height="282" dataProvider="{deptDg.dataProvider}"

Add a Column Chart | 147

 showDataTips="true"
 itemClick="deptPieCht_itemClickHandler(event)">
 <mx:series>
 <mx:PieSeries field="budget" nameField="name"
 labelField="name" labelPosition="inside" />
 </mx:series>
 </mx:PieChart>
 <mx:ColumnChart includeIn="DepartmentDetails" x="325"
 y="308" id="deptColCht" height="278" width="363"
 showDataTips="true">
 <mx:horizontalAxis>
 <mx:CategoryAxis id="expenseAxis" title="Expenses"
 categoryField="field"/>
 </mx:horizontalAxis>
 <mx:verticalAxis>
 <mx:LinearAxis title="Amount" minimum="0"
 maximum="500000"/>
 </mx:verticalAxis>
 <mx:series>
 <mx:ColumnSeries displayName="Estimated"
 yField="est" showDataEffect="{interpolate}"/>
 <mx:ColumnSeries displayName="Actual"
 yField="actual" showDataEffect="{interpolate}"/>
 </mx:series>
 </mx:ColumnChart>
 <mx:Legend includeIn="DepartmentDetails"
 dataProvider="{deptColCht}" x="596" y="325"/>
 <!--<mx:Legend includeIn="DepartmentChart"
 dataProvider="{deptPieCht}" x="323" y="308"/>-->
</s:Application>

Format Charts
In this tutorial, you will customize the pie and column charts.
You will change fill, axis, and tick colors; rotate axis titles; for-
mat axis titles and labels; and format data tips.

Step 1: Set Chart Fill Colors
In TestDrive.css, create a PieSeries type selector with the
fills style set to a list of at least seven
colors (#7F7364,#BFB59F,#E5DFC3,#586F99,#6782B2,#ADCAFF,
#F8F8F4). Create a class selector called brownFill with fill set

148 | Chapter 6: Add Charts and Graphs

to brown (#403029). In TestDrive.mxml, set the styleName prop-
erty of the Actual ColumnSeries to brownFill.

Your new selectors should appear as follows:

mx|PieSeries
{
 fills:#7F7364,#BFB59F,#E5DFC3,#586F99,#6782B2,#ADCAFF,
 #F8F8F4;
}
.brownFill
{
 fill:#403029;
}

The ColumnSeries should appear as follows:

<mx:ColumnSeries displayName="Actual" yField="actual"
 styleName="brownFill"/>

Run the application and drill down into department data. You
will see your new colors in the pie and column chart (Fig-
ure 6-10).

Figure 6-10. Customize the chart fill colors

Step 2: Set a Column Fill Color Dynamically
Assign the first ColumnSeries an id of estSeries and in the
deptPieCht itemClick handler, use setStyle() to set the fill
style to the color of the selected pie chart item: (event.hit
Data.chartItem as PieSeriesItem).fill.

Format Charts | 149

Your ColumnSeries code should appear as follows:

<mx:ColumnSeries id="estSeries" displayName="Estimated"
 yField="est" showDataEffect="{interpolate}"/>

Your handler code should appear as follows:

protected function
 deptPieCht_itemClickHandler(event:ChartItemEvent):void
{
 currentState="DepartmentDetails";
 deptColCht.dataProvider=
 createDataProvider(event.hitData.item);
 expenseAxis.title=event.hitData.item.name+" Expenses";
 estSeries.setStyle("fill",(event.hitData.chartItem
 as PieSeriesItem).fill);
}

Be sure to select PieSeriesItem from Code Assist so the fol-
lowing import statement is written for you:

import mx.charts.series.items.PieSeriesItem;

Run the application. When you select a department in the pie
chart, the first series in the column chart is now the same color,
as shown in Figure 6-11. Look at the position of the vertical
axis title; you will flip this in the next step.

Figure 6-11. Match the colors of the selected pie chart item and the
first column series

150 | Chapter 6: Add Charts and Graphs

Step 3: Rotate the Axis Title
Set the LinearAxis id to amountAxis and set the ColumnChart
verticalAxisRenderers property to an instance of the
AxisRenderer class. For the AxisRenderer, set the verticalAx
isTitleAlignment style to vertical and the axis property to
amountAxis.

Your code should appear as follows:

<mx:verticalAxis>
 <mx:LinearAxis id="amountAxis" title="Amount"
 minimum="0" maximum="500000"/>
</mx:verticalAxis>
<mx:verticalAxisRenderers>
 <mx:AxisRenderer verticalAxisTitleAlignment="vertical"
 axis="{amountAxis}"/>
</mx:verticalAxisRenderers>

Run the application. The vertical axis title is now rotated, as
shown in Figure 6-12.

Figure 6-12. Rotate the vertical axis title

Step 4: Make the Axis Titles Bold
In TestDrive.css, create a ColumnChart type selector and set
axis-title-style-name to a class selector called brownTitles.
Create the class selector called brownTitles and set its font-
weight to bold and its color to dark brown (#403029).

Format Charts | 151

The selectors should appear as follows:

mx|ColumnChart
{
 axis-title-style-name:brownTitles;
}
.brownTitles
{
 font-weight:bold;
 color:#403029;
}

Run the application. The axis titles are now bold and brown.

Step 5: Set Axis and Tick Colors
Use the following steps to set the axis and tick colors to brown:

1. In the Declarations block, create a SolidColorStroke ob-
ject called brownStrokeThick and set its color (#7F7364)
and its weight (5).

2. Create a second SolidColorStroke object called brown
StrokeThin and set its color (#7F7364) and its weight (1).

3. In the ColumnChart verticalAxisRenderers, set axis
Stroke and tickStroke to the brownStrokeThick and
brownStrokeThin objects.

4. Set the horizontalAxisRenderers property to an instance
of the AxisRenderer class and set its axis to expen
seAxis and its stroke styles the same as the other
renderer.

The declarations should appear as follows:

<s:SolidColorStroke id="brownStrokeThick" color="#7F7364"
 weight="5"/>
<s:SolidColorStroke id="brownStrokeThin" color="#7F7364"
 weight="1"/>

The axis renderers should appear as follows:

<mx:verticalAxisRenderers>
 <mx:AxisRenderer verticalAxisTitleAlignment="vertical"
 axis="{amountAxis}" axisStroke="{brownStrokeThick}"
 tickStroke="{brownStrokeThin}"/>

152 | Chapter 6: Add Charts and Graphs

</mx:verticalAxisRenderers>
<mx:horizontalAxisRenderers>
 <mx:AxisRenderer axis="{expenseAxis}"
 axisStroke="{brownStrokeThick}"
 tickStroke="{brownStrokeThin}"/>
</mx:horizontalAxisRenderers>

Run the application. The axes and ticks are now brown, as
shown in Figure 6-13.

Figure 6-13. Change the axis and tick colors

Step 6: Format Axis Labels as Currencies
In the Declarations block, create a CurrencyFormatter called
moneyFormatter and set its properties to format in your cur-
rency. In the LinearAxis tag, set its labelFunction to
axisMoneyFormatter. In the Script block, include the following
formatter function:

import mx.charts.chartClasses.IAxis;
protected function axisMoneyFormatter(labelValue:Object,
 previousValue:Object, axis:IAxis):String{

Format Charts | 153

 return moneyFormatter.format(labelValue);
}

The LinearAxis code should appear as follows:

<mx:LinearAxis id="amountAxis" title="Amount" minimum="0"
 maximum="500000" labelFunction="axisMoneyFormatter"/>

The chart component calls the formatter function for every la-
bel on the vertical axis. Its method signature (its arguments and
return type) are defined by the component using it. You can
look up the method’s required signature in the API for the
LinearAxis class.

Run the application. The vertical axis labels are now formatted,
as shown in Figure 6-14.

Figure 6-14. Format the vertical axis labels as currencies

154 | Chapter 6: Add Charts and Graphs

Step 7: Format Data Tips
Set the PieChart dataTipFunction to formatDeptPieTips. In the
Script block, include the following formatter function:

import mx.charts.HitData;
protected function
 formatDeptPieTips(hitData:HitData):String{
 return ""+hitData.item.name+""+"Budget: "
 +moneyFormatter.format(hitData.item.budget);
}

The PieChart opening tag should appear as follows:

<mx:PieChart includeIn="DepartmentChart,DepartmentDetails"
 x="35" y="308" id="deptPieCht" width="282" height="282"
 dataProvider="{deptDg.dataProvider}" showDataTips="true"
 itemClick="deptPieCht_itemClickHandler(event)"
 dataTipFunction="formatDeptPieTips">

The chart component calls the formatter function before dis-
playing every data tip. Just as for the labelFunction in the last
step, its method signature is defined by the component using
it, the PieChart, and you can look it up in the API for that class.

NOTE
You can use only basic HTML formatting in this for-
matter function.

Run the application. The pie chart data tips are now formatted
to display currency amounts, as shown in Figure 6-15.

Congratulations! In this module you’ve learned to add charts
to your Flex application. You used a pie chart and a column
chart and accomplished all the common customization tasks,
including drilling down into data; animating data changes; and
formatting fills, axes, titles, labels, and data tips.

Format Charts | 155

Figure 6-15. Format data tips

The completed code should look like the following (you can
download the sample application at www.adobe.com/devnet/
flex/testdrive/assets/testdrive_add_charts.zip):

TestDrive.mxml

<?xml version="1.0" encoding="utf-8"?>
<s:Application ...>
 <fx:Style source="TestDrive.css"/>
 <fx:Script>
 <![CDATA[
 (...)
 import mx.charts.HitData;
 import mx.charts.chartClasses.IAxis;
 import mx.charts.events.ChartItemEvent;
 import mx.charts.series.items.PieSeriesItem;

 protected function
 deptPieCht_itemClickHandler(
 event:ChartItemEvent):void
 {
 currentState="DepartmentDetails";
 deptColCht.dataProvider=
 createDataProvider(event.hitData.item);

156 | Chapter 6: Add Charts and Graphs

http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_add_charts.zip
http://www.adobe.com/devnet/flex/testdrive/assets/testdrive_add_charts.zip

 expenseAxis.title=
 event.hitData.item.name+" Expenses";
 estSeries.setStyle("fill",(event.hitData.chartItem
 as PieSeriesItem).fill);
 }
 protected function
 axisMoneyFormatter(labelValue:Object,
 previousValue:Object, axis:IAxis):String{
 return moneyFormatter.format(labelValue);
 }

 protected function
 formatDeptPieTips(hitData:HitData):String{
 return""+hitData.item.name+"
"+
 "Budget: "+moneyFormatter.format(
 hitData.item.budget);
 }
]]>
 </fx:Script>
 <fx:Declarations>
 (...)
 <mx:SeriesInterpolate id="interpolate"
 duration="1000"/>
 <s:SolidColorStroke id="brownStrokeThick"
 color="#7F7364" weight="5"/>
 <s:SolidColorStroke id="brownStrokeThin"
 color="#7F7364" weight="1"/>
 <mx:CurrencyFormatter id="moneyFormatter"
 currencySymbol="$" precision="0"/>
 </fx:Declarations>
 (...)
 <mx:PieChart
 includeIn="DepartmentChart,DepartmentDetails" x="35"
 y="308" id="deptPieCht" width="282" height="282"
 dataProvider="{deptDg.dataProvider}"
 itemClick="deptPieCht_itemClickHandler(event)"
 showDataTips="true"
 dataTipFunction="formatDeptPieTips">
 <mx:series>
 <mx:PieSeries field="budget" nameField="name"
 labelField="name" labelPosition="inside" />
 </mx:series>
 </mx:PieChart>
 <mx:ColumnChart includeIn="DepartmentDetails" x="325"
 y="308" id="deptColCht" height="278" width="363"
 showDataTips="true">
 <mx:horizontalAxis>

Format Charts | 157

 <mx:CategoryAxis id="expenseAxis" title="Expenses"
 categoryField="field"/>
 </mx:horizontalAxis>
 <mx:verticalAxis>
 <mx:LinearAxis id="amountAxis" title="Amount"
 minimum="0" maximum="500000"
 labelFunction="axisMoneyFormatter"/>
 </mx:verticalAxis>
 <mx:verticalAxisRenderers>
 <mx:AxisRenderer
 verticalAxisTitleAlignment="vertical"
 axis="{amountAxis}"
 axisStroke="{brownStrokeThick}"
 tickStroke="{brownStrokeThin}"/>
 </mx:verticalAxisRenderers>
 <mx:horizontalAxisRenderers>
 <mx:AxisRenderer axis="{expenseAxis}"
 axisStroke="{brownStrokeThick}"
 tickStroke="{brownStrokeThin}"/>
 </mx:horizontalAxisRenderers>
 <mx:series>
 <mx:ColumnSeries id="estSeries"
 displayName="Estimated" yField="est"
 showDataEffect="{interpolate}"/>
 <mx:ColumnSeries displayName="Actual"
 yField="actual" showDataEffect="{interpolate}"
 styleName="brownFill"/>
 </mx:series>
 </mx:ColumnChart>
 <mx:Legend includeIn="DepartmentDetails"
 dataProvider="{deptColCht}" x="596" y="325"/>
 <!--<mx:Legend includeIn="DepartmentChart"
 dataProvider="{deptPieCht}" x="323" y="308"/>-->
</s:Application>

TestDrive.css

mx|PieSeries
{
 fills:#7F7364,#BFB59F,#E5DFC3,#586F99,#6782B2,#ADCAFF,
 #F8F8F4;
}
.brownFill
{
 fill:#403029;
}
mx|ColumnChart

158 | Chapter 6: Add Charts and Graphs

{
 axis-title-style-name:brownTitles;
}
.brownTitles
{
 font-weight:bold;
 color:#403029;
}

This concludes your test drive of Flash Builder 4. In less than
a day, you’ve learned to build a Flex application that retrieves,
displays, updates, adds, and deletes data in a database, and you
learned to debug, deploy, customize, and add charts to this
application. The finished application is shown in Figure 6-16.

Figure 6-16. The finished application

Format Charts | 159

CHAPTER 7

Resources for Flex Developers

There are many ways you can learn about Flex. This chapter
highlights a few select resources. As you explore these resour-
ces, you will surely discover even more sources of information.

The Adobe Flex Developer Center (www.adobe.com/devnet/
flex/) is the official Adobe Flex community center and has ar-
ticles and great information for Flex developers.

Online Resources for Getting Started
There are many ways to get started with Flex:

Flex Test Drive (www.adobe.com/devnet/flex/testdrive/)
Quickly build an application with Flex.

Flex in a Week (www.adobe.com/devnet/flex/videotraining/)
A free one-week video training course in Flex.

Flex QuickStarts (www.adobe.com/devnet/flex/quickstarts/)
Dozens of examples with code explaining a broad range
of topics, including application basics, handling data, and
building advanced user interfaces.

Tour de Flex (www.adobe.com/devnet/flex/tourdeflex/)
A desktop application with over 200 running samples with
source code. Tour de Flex showcases Flex capabilities and
resources.

161

http://www.adobe.com/devnet/flex/
http://www.adobe.com/devnet/flex/
http://www.adobe.com/devnet/flex/testdrive/
http://www.adobe.com/devnet/flex/videotraining/
http://www.adobe.com/devnet/flex/quickstarts/
http://www.adobe.com/devnet/flex/tourdeflex/

Flex documentation (www.adobe.com/devnet/flex/?view=docu
mentation)

Provides access to all Flex and Flex-related documenta-
tion from Adobe.

Adobe TV (http://tv.adobe.com/product/flex/)
A collection of video learning resources from Adobe.

The Flex Cookbook
The Adobe Flex Cookbook is an invaluable resource for both
Flex beginners and experienced Flex coders. It’s a community-
driven repository of code fragments for Flex that solves lots of
common coding problems. If you are stumped about how to
do something, the first place to visit is the Flex Cookbook
(www.adobe.com/go/flex_cookbook).

When you have something to contribute, you can add recipes
to the Cookbook and reap the benefits of participating in a very
active Flex community.

The Flex Cookbook home page even offers an Eclipse plug-in
that shows you the most recent Cookbook entries in Flex
Builder.

Community Links and Resources
Flex blogs are a primary source of information about Flex.
Often, blog entries include code recipes that are too small to
warrant coverage in an article but are nonetheless helpful and
can save you the time and effort of researching and imple-
menting Flex solutions yourself.

Here’s a list of some of the best Flex blogs and community
websites:

Flex Team Blog (http://blogs.adobe.com/flex/)
This is the official blog from the Flex team at Adobe.

162 | Chapter 7: Resources for Flex Developers

http://www.adobe.com/devnet/flex/?view=documentation
http://www.adobe.com/devnet/flex/?view=documentation
http://tv.adobe.com/product/flex/
http://www.adobe.com/go/flex_cookbook
http://blogs.adobe.com/flex/

Peter deHaan (http://blog.flexexamples.com/)
Peter deHaan is a member of the Flex SDK team. His blog
provides examples on using and customizing Flex
components.

Mike Morearty (www.morearty.com/blog/)
Mike Morearty is the brains behind the debugging portion
of Flex Builder. His blog keeps you up-to-date on what’s
happening in the world of Flex.

Chet Haase (http://graphics-geek.blogspot.com/)
Chet Haase’s blog specializes in Flex/Flash graphics
techniques.

Alex Harui (http://blogs.adobe.com/aharui/)
Alex Harui’s Flex Closet is a collection of Flex-related
things. The blog contains numerous demos and down-
loadable source files.

Sujit Reddy G (http://sujitreddyg.wordpress.com/)
Sujit Reddy is a technical evangelist for Flash Platform
technologies at Adobe. His blog contains examples and
tutorials on accessing data with Flex and Flash Builder.

Adobe Feeds
Adobe Feeds is a blog aggregator that you can use to
search for articles on Flex and Flash Builder. As a starting
point, under Smart Categories choose Flex.

RIAForge
This site hosts several open source development projects
for Flex.

Flex.org
This is the Flex community website.

InsideRIA
This is O’Reilly’s RIA website.

Flex Support Forums
A great community resource is the Flex Support Forums,
where you can find user-to-user discussions regarding
Flex. What’s more, the Flex team monitors the forums to
help you out when you get into a jam.

Community Links and Resources | 163

http://blog.flexexamples.com/
http://www.morearty.com/blog/
http://graphics-geek.blogspot.com/
http://blogs.adobe.com/aharui/
http://sujitreddyg.wordpress.com/
http://feeds.adobe.com/
http://www.riaforge.org/
http://flex.org
http://www.insideria.com/
http://forums.adobe.com/community/flex

Adobe Community Help Client (CHC)
The CHC, which is installed with Flash Builder, provides
a portal to Adobe Flex documentation and a variety of
Adobe and nonAdobe learning content. The CHC pro-
vides search options that include both Adobe and com-
munity resources, plus user feedback. The CHC can filter
searches for resources containing code samples. If you
don’t have Flash Builder installed yet or you want to check
out the next-generation help experience from Adobe for
Flash Builder or any other product, visit www.adobe.com/
support/chc/.

FlexCoders
The FlexCoders Yahoo! group is an active forum where
experienced Flex developers ask questions and exchange
ideas.

Social networking
Follow Flex on Facebook and Twitter to access the latest
examples, videos, and news. Access Flex on Facebook at
www.facebook.com/adobeflex. On Twitter, search for
#flex and #flashbuilder.

Flex user groups
It’s a good idea to join a local Flex user group. Flex user
groups are located all over the world and are cataloged at
http://groups.adobe.com/. Meanwhile, a Flex or Flash
“Camp” (an informal gathering of Flex enthusiasts and
Adobe folks who get together to try to build real Flex
applications) should be high on your list of things to
attend. Upcoming Flash Camp events are displayed prom-
inently in the sidebar of the Adobe Groups page.

Newsletters
You should consider subscribing to The Edge, Adobe’s news-
letter for designers and developers.

164 | Chapter 7: Resources for Flex Developers

http://www.adobe.com/support/chc/
http://www.adobe.com/support/chc/
http://tech.groups.yahoo.com/group/flexcoders/
http://www.facebook.com/adobeflex
http://groups.adobe.com/
http://www.adobe.com/newsletters/edge/

The News Flash newsletter is a free publication to help devel-
opers to stay current with the latest news about the Adobe
Flash Platform.

Books
Besides this book, there are many books on Flex 4 and Action-
Script 3 currently available. Check out the Flex 4 Cookbook by
Joshua Noble et al. (O’Reilly, http://oreilly.com/catalog/
9780596805623). Its sister publication, ActionScript 3.0 Cook-
book, by Joey Lott et al. (O’Reilly, http://oreilly.com/catalog/
9780596526955/) is also an excellent resource. Colin Moock’s
Essential ActionScript 3.0 (O’Reilly, http://oreilly.com/catalog/
9780596526948/), demonstrates use of ActionScript that will
blow your mind.

You can also check http://oreilly.com/flex/index.html and http:
//flex.org for lists of books and other resources for Flex
developers.

Books | 165

http://www.adobe.com/devnet/ria/newsletter/index.html
http://oreilly.com/catalog/9780596805623
http://oreilly.com/catalog/9780596805623
http://oreilly.com/catalog/9780596526955/
http://oreilly.com/catalog/9780596526955/
http://oreilly.com/catalog/9780596526948/
http://oreilly.com/catalog/9780596526948/
http://oreilly.com/flex/index.html
http://flex.org
http://flex.org

Index

A
Acrobat.com application, xxi
ActionScript, xxvii
ActionScript 3.0 Cookbook

(O’Reilly), 165
Adobe AIR, xxv
Adobe Flash Builder (see

Flash Builder)
Adobe Flash Catalyst, xxvi
Adobe Flash Platform, xxiv,

xxvi–xxx
Adobe Flash Player, xxiv, 91,

92, 97
Adobe Flash Professional

CS5, xxvi
Adobe LiveCycle Data

Services, xxix
Adobe TV website, 162
animating data change in

ColumnChart, 146
application

background color for, 118

components of (see
components)

debugging (see debugging)
deploying to web server,

95–99
including on a web page,

91–95
project for (see project)
release version of, creating,

89–91
types of, xv–xxiii

Application container, 8
.as (ActionScript) files, xiv, 7
attributes, 10

(see also events;
properties; styles)

axes for ColumnChart
formatting as currency,

153
line and tick colors for,

152
titles of, 142, 145

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

167

color and weight for,
151

rotating, 151
types of, 142

B
background color for

application, 118
bin-debug folder, 8, 89, 91,

92, 99
bin-release folder, 90, 91, 92,

95
Binding tag, 28, 45
BitmapImage control, 124–

125
BlazeDS, xxviii, 4, 104
blogs about Flex, 162
books about Flex, 165
breakpoints, 83–88

(see also debugging)
business productivity

applications, xxi
Button control

click event
changing states on, 33,

34, 48, 135
deleting data on, 66
handler for, generating,

32
modifying styles on, 39
retrieving data on, 37–

39
creating, 8
skin for, 120–125, 127–

131

C
CallResponder object, 18, 50,

59, 66
Cascading Style Sheet (see

CSS)
change event, handling, 35
charts

column charts, 139–146
formatting, 148–159
pie charts, 133–138

class selectors, CSS
assigning to another

component, 116
creating, 115

click event
changing states on, 33, 34,

48, 57
deleting data on, 66
handler for, generating,

32
modifying styles on, 39
retrieving data on, 37–39

code examples, ix
(see also Test Drive
example)

ColdFusion
connecting data service to

DataGrid, 15
creating Flex data service,

12
deploying service code,

101–104
installing Test Drive files,

3
project settings, 6

Collaboration service, xxx
color

168 | Index

background color of
application, 118

fill colors for charts, 148,
149

of line and ticks for
ColumnChart axes,
152

setting in CSS, 113
setting in Design mode,

110
specifying, format for, 9
of titles in ColumnChart

axes, 151
ColumnChart control, 139–

146
animating data change in,

146
axes of

color and weight of
titles for, 151

formatting labels as
currency, 153

line and tick colors for,
152

rotating titles of, 151
titles of, 142, 145
types of, 142

data for, 140–142
data tips for, 143
fill colors for, 148, 149

components, 8–10
(see also specific
components and controls)
adding, 8, 28
attributes for, 10
types of, 109

conditional logic, 38

configuration applications,
xvi

consumer applications, xvii
Content Assist, Flash Builder,

10
controls (see components)
conventions used in this book,

ix
creationComplete event, 16
CSS (Cascading Style Sheet)

application background
color, 118

class selectors
assigning to another

component, 116
creating, 115

creating, 110–111
global selectors, creating,

110–111
ID selectors, creating, 117
pseudoselectors, creating,

114
selectors, modifying, 113
type selectors

creating, 111–112
for DataGrid, 117

CSS files, xiv
CurrencyFormatter class, 153

D
data binding, 28, 45
data service

creating, 12–14
testing operations of, 69–

74
data tips

ColumnChart, 143
PieChart, 136, 155

Index | 169

data visualization
applications, xxii

database
adding data to, 43–53
connecting to

ColumnChart, 140–
142

connecting to DataGrid,
14–16, 23

deleting data, 66–67
retrieving data on click

event, 37–39
updating data

with DataGrid, 62–65
with form, 56–60

DataGrid control
cell values, tracing, 81
change event, handling,

35
code for, 16–18
configuring columns, 18
connecting to database,

14–16, 23
creating, 8
providing data for

PieChart, 133
type selector for, 117
updating data with, 62–65

debugging, 80
breakpoints, 83–88
location of debug version

of application, 89
network traffic, tracing,

75–77
service operations, testing,

69–74
stepping through code,

86–88

variables, tracing, 79–82
Design mode

components
adding, 8
configuring, 18

event handlers, generating,
32

states
configuring, 24
creating, 21

Distribution service, xxx
Dynamic Help, 10, 114

E
education applications, xix
Essential ActionScript 3.0

(O’Reilly), 165
events, 32–41

change event, handler for,
35

click event, handler for, 33,
34, 37, 38, 39

creationComplete event,
handler for, 16

focusIn event, handler for,
35

generating handlers for,
32

examples, ix
(see also Test Drive
example)

F
Fiat consumer application,

xvii
fill colors for charts, 148, 149
financial services

applications, xxiii

170 | Index

Flash Builder, xiv, xxvi
creating a data service, 14
creating a project, 5
creating a release build,

89
debugger, 79–88
generating an event

handler, 33
Network Monitor, 75–77
Test Operation, 69–74

Flash Builder Content Assist,
10

Flash Catalyst, xxvi
Flash Platform, xxiv, xxvi–

xxx
Flash Player, xxiv, 91, 92, 97
Flash Professional CS5, xxvi
Flash Remoting MX, xxviii
Flex, xiii–xxiii

(see also application)
blogs about, 162
online resources for, 161–

165
types of applications built

with, xv–xxiii
video training for, vii

Flex 4 Cookbook (O’Reilly),
165

Flex Cookbook website, 162
Flex in a Week website, 161
Flex QuickStarts website,

161
Flex Showcase, xv
Flex Test Drive website, 161
focusIn event, 35
fonts

for DataGrid, 39
for Labels, 9

setting in CSS, 113
setting in Design mode,

110
used in this book, ix

Form, 26
(see also input form;
Master-Detail form)

formatting charts, 148–159
(see also properties; styles)

FXG files, 128

G
global selectors, CSS, 110–

111
graphics

adding to skin, 124–125,
128–131

code for, 122, 128
Group component, 123

H
Help view, Dynamic Help, 10,

114
history files, preventing

generation of, 98
history folder, 96, 98
host component, 122, 128
HTML page (see web page)
html-template files, 91

I
ID selectors, CSS, 117
if statement, 38
images (see graphics)
input form

generating, 43–46
layout of, 47

Index | 171

updating data with, 56–60
itemEditEnd event, 62–65

J
Java

connecting data service to
DataGrid, 15

creating Flex data service,
12

deploying service code,
104–108

installing Test Drive files,
4

project settings, 7

L
Label control

for Button skin, 123
creating, 8
properties of, 9

labels for PieChart, 136
legend for PieChart, 134, 138
LiveCycle Data Services, xxix
Lott, Joey (ActionScript 3.0

Cookbook), 165

M
Master-Detail form, 25
media applications, xviii
Mini USA configuration tool,

xvi
Moock, Colin (Essential

ActionScript 3.0), 165
MX components, 109
mx: prefixing tags, 110
MXML, xiv, xxvii, 7

(see also skins)

attributes, setting, 10
generated code in, 16

N
NASDAQ Market Replay

application, xxiii
Network Monitor, 75–77
New York Times Reader

application, xviii
News Flash newsletter, 164
newsletters for Flex, 164
Noble, Joshua (Flex 4

Cookbook), 165

O
online resources (see

websites)

P
pages, on device screen (see

states)
pages, web, including

application on, 91–99
PHP

connecting data service to
DataGrid, 15

creating Flex data service,
13

creating release build, 89
deploying service code,

99–101
files in bin folders, 98
installing Test Drive files,

2
project settings, 5

PieChart control, 133–138
data for, 133

172 | Index

data tips for, 136, 155
fill colors for, 148
labels for, 136
legend for, 134, 138
switching states when slice

clicked, 139
product configuration

applications, xvi
productivity applications, xxi
project, 5–8

(see also application)
compiling and running,

10
creating, 5–8
history files, preventing

generation of, 98
release version of, creating,

89–91
properties, 8–12

(see also attributes)
setting in Design mode, 8
setting in MXML, 10
setting in Source mode, 9
viewing at breakpoints, 84

pseudoselectors, CSS, 114
publishing applications, xviii

R
release version of application,

creating, 89–91
remote procedure calls, xxviii
result event

changing states on, 59
displaying data on, 50, 52,

66
return type, configuring, 73
Rosetta Stone TOTALe

application, xix

RSL (Runtime Shared
Library), 95

S
s: prefixing tags, 109
screens (see states)
selectors, CSS

class selectors
assigning to another

component, 116
creating, 115

global selectors, creating,
110–111

ID selectors, creating, 117
modifying, 113
pseudoselectors, creating,

114
type selectors

creating, 111–112
for DataGrid, 117

service code, deploying, 99–
108

service operations, testing,
69–74

services (see ColdFusion;
Java; PHP; Zend
Framework)

skin part, 123
skins, 120–131

(see also styles)
code for, 122–125, 128–

131
creating file for, 120–122,

127
social networking

applications, xx
Social service, xxx
Source mode

Index | 173

viewing generated code in,
9

viewing generated event
handler in, 33

Spark components, 109
SpatialKey application, xxii
states

changing on change event,
35

changing on click event,
33, 34, 48, 57, 135

changing on result event,
59

changing when slice
clicked in PieChart,
139

creating, 21–29, 25, 43,
56

stepping through code, 86–
88

styles, 10, 109–118
(see also attributes; skins)
modifying on click event,

39
setting in CSS, 110–118
setting in MXML, 10
setting in Source mode, 9

stylesheet (see CSS
(Cascading Style
Sheet))

SWF files, xiv, 8

T
Test Drive example

compiling and running,
10

components, adding, 8
data

adding, 43–53
deleting, 66–67
updating with

DataGrid, 62–
65

updating with form,
56–60

data service, creating, 12–
14

DataGrid
code for, 16–18
configuring columns,

18
connecting database to,

14–16
event handlers, 32–41
project for, creating, 5–8
server files for, 2–5
states, creating, 21–29

testing (see debugging)
TextInput control

clearing on focusIn event,
35

creating, 28
Times Reader application,

xviii
TOTALe application, xix
Tour de Flex website, 161
tracing

network traffic, 75–77
variables, 79–82

TweetDeck application, xx
type selectors, CSS

creating, 111–112
for DataGrid, 117

174 | Index

U
Universal Mind SpatialKey

application, xxii
user interface, building, 1–12

V
variables

tracing, 79–82
viewing at breakpoints, 84
viewing when stepping

through code, 87

W
web page, including

application on, 91–95
web server, deploying

application to, 95–99
websites

Acrobat.com application,
xxi

Adobe TV, 162
BlazeDS, xxix
blogs about Flex, 162
Flash Builder, xiv
Flash Platform Services,

xxx
Flash platform tools, xxvi
Flex Cookbook, 162
Flex documentation, 162
Flex in a Week, 161
Flex QuickStarts, 161
Flex Showcase, xv
Flex Test Drive, 161
for this book, x
LiveCycle Data Services,

xxx

NASDAQ Market Replay
application, xxiii

News Flash newsletter,
164

Rosetta Stone TOTALe
application, xix

Times Reader application,
xviii

Tour de Flex, 161
TweetDeck application,

xx
Universal Mind SpatialKey

application, xxii
video training for Flex, vii

Z
Zend Framework, 14, 100

Index | 175

Colophon
The animal on the cover of Getting Started with Flex™ 4 is a
sea urchin. The name is generic—“urcheon” is Middle English
for “hedgehog”—and covers members of the taxonomic class
Echinoidea. Sea urchins can be found in every ocean and in a
wide range of colors, including black, green, brown, purple,
and red. Specimens are typically small, only growing to 1–4
inches across, though some extraordinary urchins have been
found measuring 14 inches across.

Sea urchins possess fivefold symmetry, similar to sand dollars
and sea stars, though it is often not immediately apparent in
living individuals. Their shells, called tests, are round and
spiny, and their small tube feet allow them to move slowly
along surfaces, gathering food into their downward-facing
mouths. Sea urchins eat mostly algae, but will sometimes also
eat various invertebrates such as mussels and sponges. Repro-
duction occurs externally; both sperm and eggs are released
into the sea water, where fertilization occurs. A fertilized sea
urchin egg can develop into a free-swimming embryo in as little
as 12 hours, though it may take several months for the indi-
vidual to develop from that stage to its adult form.

The ovaries of a sea urchin, called corals or roe, are considered
a delicacy in many parts of the world. Though prepared dif-
ferently and from different species, sea urchin are eaten in
the Mediterranean, Chile, the West Indies, New Zealand, the
Pacific coast of North America, and Japan, for example. The
demand for sea urchin is particularly high in Japan, where high-
quality uni, as it is called, can sell for as much as $450/kg.

The cover image is from Johnson’s Natural History. The cover
font is Adobe ITC Garamond. The text font is Linotype Birka;
the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Books Online
	Acknowledgments

	Introduction
	First Things First—What Is Flex?
	How Does Flex Work?
	What Can You Do with Flex?
	Product Configuration
	Consumer Applications
	Media and Publishing
	Education
	Social Networking
	Business Productivity
	Data Visualization
	Financial Services

	Technologies and Terms Related to Flex Development
	Adobe Flash Platform
	Flash Platform Runtimes
	Adobe Flash Player
	Adobe AIR
	Flash Platform Tools
	Adobe Flash Builder
	Adobe Flash Catalyst
	Adobe Flash Professional

	Flash Platform Languages
	Servers and Server-Side Technologies
	Flex remote procedure calls
	Flash Remoting
	BlazeDS
	Adobe LiveCycle Data Services
	Flash Platform Services

	Chapter 1. Build an Application in an Hour
	Build the User Interface
	Step 1: Install the Test Drive Server Files
	Step 2: Create a New Flex Project
	Step 3: Use Design Mode to Add Components and Set Properties
	Step 4: Change Component Attributes in MXML
	Step 5: Browse the Application

	Connect to Data
	Step 1: Create a Flex Data Service
	Step 2: Connect the getEmployees() Service Operation to the DataGrid
	Step 3: Look at the Generated Code in Your MXML File
	Step 4: Configure DataGrid Columns and Run the Application

	Create Pages
	Step 1: Create Employees and Departments States
	Step 2: Retrieve and Display Department Data in the Departments DataGrid
	Step 3: Change Property Values in Different States
	Step 4: Change a Property or Style Value in All States
	Step 5: Create a New EmployeeDetails State
	Step 6: Add Objects to Specific States

	Code Your Interactions
	Step 1: Generate an Event Handler
	Step 2: Change to the Departments State on a Button click Event
	Step 3: Change to the Employees State on a Button click Event
	Step 4: Change to the EmployeeDetails State on a DataGrid change Event
	Step 5: Clear the TextInput Component on a focusIn Event
	Step 6: Load New Data on a click Event
	Step 7: Use Conditional Logic to Retrieve All or Only Some Records
	Step 8: Modify Object Styles on a click Event

	Chapter 2. Modify the Database
	Add Data Using a Form
	Step 1: Create a New EmployeeAdd State
	Step 2: Create an Input Form
	Step 3: Use the employee Object Instead of employee2
	Step 4: Modify the Form Layout
	Step 5: Switch States When the Add Button Is Clicked
	Step 6: Submit Data to the Server
	Step 7: Update the Local Data
	Step 8: Select and Show the New Record in the DataGrid

	Update Data Using a Form
	Step 1: Create a New EmployeeUpdate State
	Step 2: Switch States When the Update Button Is Clicked
	Step 3: Submit Changes to the Server
	Step 4: After the Update, Switch to the EmployeeDetails State

	Update Data Using the DataGrid
	Step 1: Make the empDg DataGrid Editable in All States
	Step 2: Generate an itemEditEnd Event Handler for the DataGrid
	Step 3: Update employee with the New Value

	Delete Data
	Step 1: Call the Service deleteEmployee() Operation
	Step 2: Update the Local Data

	Chapter 3. Test and Debug Your Code
	Test Server-Side Code
	Step 1: Test a Service Operation That Returns Data
	Step 2: Test a Service Operation That Requires an Input Parameter
	Step 3: Test a Service Operation That Requires a Complex Input Parameter
	Step 4: Configure the createEmployee() Operation Return Type
	Step 5: Test the createEmployee() Operation Again

	Trace Network Traffic
	Step 1: Enable the Network Monitor
	Step 2: View the getEmployees() Response
	Step 3: View Network Traffic Data for Additional Operations

	Trace Variables
	Step 1: Trace Employee-Related Variables
	Step 2: Debug the Application
	Step 3: Stop the Debugger and Switch Perspectives
	Step 4: Trace Event-Related Variables
	Step 5: Trace the Value of the Edited DataGrid Cell

	Use Breakpoints
	Step 1: Add a Breakpoint
	Step 2: Look at Variables in the Variables View
	Step 3: Look at the Inherited Properties of the event Object
	Step 4: Step into Your Code
	Step 5: Watch the employee[event.dataField] Variable
	Step 6: Step Through Code and Watch the Expression Change Value

	Chapter 4. Deploy Your Application to a Web Server
	Create a Release Version
	Step 1: Create a Release Build
	Step 2: Compare Application File Sizes

	Include Your Application on a Web Page
	Step 1: Look at the html-template Files
	Step 2: Open TestDrive.html
	Step 3: Look at the bin-release Files
	Step 4: Change the Project Settings So History Files Are Not Generated

	Deploy Service Code
	PHP
	Step 1: In Flash Builder, browse the generated EmployeeService file
	Step 2: Open the generated Flash Remoting files
	Step 3: Open the PHP web root folder

	ColdFusion
	Step 1: Locate the Flash Remoting configuration file
	Step 2: Open the services-config.xml file
	Step 3: Open the remoting-config.xml file
	Step 4: In Flash Builder, browse the generated EmployeeService file

	Java
	Step 1: Locate the required BlazeDS files
	Step 2: Open the services-config.xml and remoting-config.xml files
	Step 3: Locate the Flex application’s reference to the services-config.xml file
	Step 4: In Flash Builder, browse the generated EmployeeService file

	Chapter 5. Change the Appearance of Your Application
	Use Styling
	Step 1: Create a Stylesheet and a CSS Global Selector
	Step 2: Create a CSS Type Selector
	Step 3: Modify a CSS Selector
	Step 4: Create a CSS Pseudoselector
	Step 5: Create a CSS Class Selector
	Step 6: Assign a CSS Class Selector to Another Component
	Step 7: Style the DataGrid
	Step 8: Create a CSS ID Selector
	Step 9: Set the Application Background Color

	Add Components to Skins
	Step 1: Create a New Button Skin File
	Step 2: Review the Skin Class
	Step 3: Place the Label Inside a Group Container with HorizontalLayout
	Step 4: Add a BitmapImage Component

	Create Skins with New Graphics
	Step 1: Create a New Button Skin File
	Step 2: Review the Skin Class
	Step 3: Review the Graphics Code
	Step 4: Add the Graphics to the Skin

	Chapter 6. Add Charts and Graphs
	Add a Pie Chart
	Step 1: Create a New State DepartmentChart with a Pie Chart
	Step 2: Specify the Data for the Chart
	Step 3: Configure Your Application Such That States Are Switched When the Chart Data Button Is Clicked
	Step 4: Display Chart Labels and Data Tips
	Step 5: Delete the Legend

	Add a Column Chart
	Step 1: Create a New State, DepartmentDetails, with a Column Chart
	Step 2: Configure Your Application Such That States Are Switched When a Department Slice Is Clicked on the Pie Chart
	Step 3: Create the ColumnChart dataProvider
	Step 4: Specify the Data to Chart
	Step 5: Specify Axis Types and Titles
	Step 6: Add a Second Series and Show Data Tips
	Step 7: Display the Selected Department Name in the Axis Title
	Step 8: Animate the Data Change

	Format Charts
	Step 1: Set Chart Fill Colors
	Step 2: Set a Column Fill Color Dynamically
	Step 3: Rotate the Axis Title
	Step 4: Make the Axis Titles Bold
	Step 5: Set Axis and Tick Colors
	Step 6: Format Axis Labels as Currencies
	Step 7: Format Data Tips

	Chapter 7. Resources for Flex Developers
	Online Resources for Getting Started
	The Flex Cookbook
	Community Links and Resources
	Newsletters
	Books

	Index

